Invariance principle for Mott variable range hopping and other walks on point processes
Caputo, P. ; Faggionato, A. ; Prescott, T.
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 654-697 / Harvested from Numdam

On considère une marche aléatoire sur les points d'un processus de Poisson marqué. Les taux de saut ont une décroissance exponentielle en fonction de la longueur du saut, généralisant le modèle de sauts à portée variable de Mott pour les systèmes désordonnés en regime de localisation forte d'Anderson. On montre que pour presque toute réalisation du processus ponctuel marqué, la marche aléatoire de point de départ arbitraire satisfait un principe d'invariance avec matrice de diffusion limite déterministe définie positive. On montre que ce resultat s'étend à d'autres processus ponctuels incluant les réseaux dilués.

We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the α-power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case α=1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/12-AIHP490
Classification:  60K37,  60F17,  60G55
@article{AIHPB_2013__49_3_654_0,
     author = {Caputo, P. and Faggionato, A. and Prescott, T.},
     title = {Invariance principle for Mott variable range hopping and other walks on point processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {654-697},
     doi = {10.1214/12-AIHP490},
     mrnumber = {3112430},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_3_654_0}
}
Caputo, P.; Faggionato, A.; Prescott, T. Invariance principle for Mott variable range hopping and other walks on point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 654-697. doi : 10.1214/12-AIHP490. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_3_654_0/

[1] V. Ambegoakar, B. Halperin and J. S. Langer. Hopping conductivity in disordered systems. Phys. Rev. B 4 (1971) 2612-2620.

[2] A. Miller and E. Abrahams. Impurity conduction at low concentrations. Phys. Rev. 120 (1960) 745-755. | Zbl 0093.22403

[3] P. Antal and A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036-1048. | MR 1404543 | Zbl 0871.60089

[4] N. W. Ashcroft and N. D. Mermin. Solid State Phyisics. Saunders College, Philadelphia, 1976.

[5] M. T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (4) (2004) 3024-3084. | MR 2094438 | Zbl 1067.60101

[6] M. T. Barlow and H.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR 2599199 | Zbl 1189.60187

[7] N. Berger and M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (1-2) (2007) 83-120. | MR 2278453 | Zbl 1107.60066

[8] N. Berger, M. Biskup, C. E. Hoffman and G. Kozma. Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 274 (2008) 374-392. | Numdam | MR 2446329 | Zbl 1187.60034

[9] M. Biskup and T. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007) 1323-1348. | MR 2354160 | Zbl 1127.60093

[10] D. Boivin. Weak convergence for reversible random walks in a random environment. Ann. Probab. 21 (1993) 1427-1440. | MR 1235423 | Zbl 0783.60067

[11] D. Boivin and J. Depauw. Spectral homogenization of reversible random walks on d in a random environment. Stochastic Process. Appl. 104 (2003) 29-56. | MR 1956471 | Zbl 1075.35507

[12] P. Caputo and A. Faggionato. Isoperimetric inequalities and mixing time for a random walk on a random point process. Ann. Appl. Probab. 17 (2007) 1707-1744. | MR 2358639 | Zbl 1141.60059

[13] P. Caputo and A. Faggionato. Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19 (4) (2009) 1459-1494. | MR 2538077 | Zbl 1173.60032

[14] P. Caputo, A. Faggionato and A. Gaudilliere. Recurrence and transience for long-range reversible random walks on a random point process. Electron. J. Probab. 14 (2009) 2580-2616. | MR 2570012 | Zbl 1191.60120

[15] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer, New York, 1988. | MR 950166 | Zbl 1026.60061

[16] A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick. Invariance principle for reversible Markov processes with applications to random motions in random environments. J. Stat. Phys. 55 (1989) 787-855. | MR 1003538 | Zbl 0713.60041

[17] R. Durrett. Probability: Theory and Examples, 3rd edition. Thomson, Cambridge, 2005. | MR 1068527 | Zbl 1202.60001

[18] A. Faggionato and P. Mathieu. Mott law for Mott variable-range random walk. Comm. Math. Phys. 281 (1) (2008) 263-286. | MR 2403611 | Zbl 1162.60025

[19] A. Faggionato, H. Schulz-Baldes and D. Spehner. Mott law as lower bound for a random walk in a random environment. Comm. Math. Phys. 263 (2006) 21-64. | MR 2207323 | Zbl 1153.82007

[20] L. R. G. Fontes and P. Mathieu. On symmetric random walks with random conductances on Z d . Probab. Theory Related Fields 134 (2006) 565-602. | MR 2214905 | Zbl 1086.60066

[21] G. Grimmett. Percolation, 2nd edition. Grundlehren 321. Springer, Berlin, 1999. | MR 1707339

[22] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov process and applications to simple exclusion. Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058

[23] S. M. Kozlov. The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (2) (1985) 73-145. | MR 786087 | Zbl 0615.60063

[24] T. M. Liggett, R. H. Schonmann and A. M. Stacey. Domination by product measures. Ann. Probab. 25 (1997) 71-95. | MR 1428500 | Zbl 0882.60046

[25] P. Mathieu. Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR 2384074 | Zbl 1214.82044

[26] P. Mathieu and A. Piatniski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287-2307. | MR 2345229 | Zbl 1131.82012

[27] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133 (2005) 245-266. | MR 2198701 | Zbl 1080.60071

[28] N. F. Mott. Conduction in glasses containing transition metal ions. J. Non-Crystal. Solids 1 (1968) 1.

[29] N. F. Mott. Conduction in non-crystalline materials. Phil. Mag. 19 (1969) 835.

[30] N. F. Mott. Electrons in glass. In Nobel Lectures, Physics 1971-1980. World Scientific, Singapore, 1992.

[31] N. F. Mott and E. A. Davis. Electronic Processes in Non-Crystaline Materials. Oxford Univ. Press, Oxford, 1979. | Zbl 0024.38001

[32] V. Sidoravicius and A. S. Sznitman. Quenched invariance principles for walks on clusters of percolations or among random conductances. Probab. Theory Related Fields 129 (2) (2004) 219-244. | MR 2063376 | Zbl 1070.60090

[33] B. Shklovskii and A. L. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin, 1984.

[34] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. | Zbl 0742.76002