Il est connu qu’une mesure de probabilité sur le cercle satisfait pour toute fonction et pour tout (ou pour un ), si et seulement si est strictement apériodique (i.e. pour tout non nul dans ). Nous étudions ici la convergence presque partout de pour , . Nous montrons une condition nécessaire et suffisante portant sur les coefficients de Fourier-Stieltjes de pour la propriété de “balayage fort” (existence d’un borélien tel que p.p. et p.p.). Les résultats sont étendus aux groupes abéliens compacts généraux de mesure de Haar . Comme corollaire nous obtenons la dichotomie suivante : pour strictement apériodique, soit p.p. pour tout et toute fonction , soit vérifie la propriété de balayage fort.
It is well-known that a probability measure on the circle satisfies for every , every (some) , if and only if for every non-zero ( is strictly aperiodic). In this paper we study the a.e. convergence of for every whenever . We prove a necessary and sufficient condition, in terms of the Fourier-Stieltjes coefficients of , for the strong sweeping out property (existence of a Borel set with a.e. and a.e.). The results are extended to general compact Abelian groups with Haar measure , and as a corollary we obtain the dichotomy: for strictly aperiodic, either a.e. for every and every , or has the strong sweeping out property.
@article{AIHPB_2013__49_2_550_0, author = {Conze, Jean-Pierre and Lin, Michael}, title = {Almost everywhere convergence of convolution powers on compact abelian groups}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {550-568}, doi = {10.1214/11-AIHP468}, mrnumber = {3088381}, zbl = {1281.37005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_550_0} }
Conze, Jean-Pierre; Lin, Michael. Almost everywhere convergence of convolution powers on compact abelian groups. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 550-568. doi : 10.1214/11-AIHP468. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_550_0/
[1] A spectral radius formula for the Fourier transform on compact groups and applications to random walks. Adv. Math. 188 (2004) 425-443. | MR 2087233 | Zbl 1058.43006
and .[2] Speed of convergence of the -fold convolution of a probability measure on a compact group. Z. Wahrsch. Verw. Gebiete 25 (1972) 1-10. | MR 326795 | Zbl 0247.60008
.[3] A Banach principle for . Adv. Math. 120 (1996) 155-172. | MR 1392277 | Zbl 0878.46020
and .[4] Almost everywhere convergence of powers. In Almost Everywhere Convergence 99-120. G. Edgar and L. Sucheston (Eds). Academic Press, Boston, MA, 1989. | MR 1035239 | Zbl 0694.60021
, and .[5] Almost everywhere convergence of convolution powers. Ergodic Theory Dynam. Systems 14 (1994) 415-432. | MR 1293401 | Zbl 0818.28005
, and .[6] Successive conditional expectations of an integrable function. Ann. Math. Statist. 33 (1962) 887-893. | MR 143246 | Zbl 0128.12602
.[7] Iterates of a product of conditional expectation operators. J. Funct. Anal. 242 (2007) 658-668. | MR 2274825 | Zbl 1128.47011
.[8] Counterexamples in ergodic theory and number theory. Math. Ann. 245 (1979) 185-197. | MR 553340 | Zbl 0398.28021
and .[9] Variance bounding Markov chains, -uniform mean ergodicity and the CLT. Stoch. Dyn. 11 (2011) 81-94. | MR 2771343 | Zbl 1210.60026
and .[10] An Introduction to the Theory of Numbers, 5th edition. Clarendon Press, New York, 1979. | JFM 64.0093.03 | MR 568909 | Zbl 0086.25803
and .[11] Pointwise convergence of the iterates of a Harris-recurrent Markov operator. Israel J. Math. 33 (1979) 177-180. | MR 571528 | Zbl 0435.60068
.[12] Ergodic theorems for convolutions of a measure on a group. Illinois J. Math. 38 (1994) 521-553. | MR 1283007 | Zbl 0831.28008
, and .[13] Ergodic Theorems. De Gruyter, Berlin, 1985. | MR 797411 | Zbl 0575.28009
.[14] The uniform zero-two law for positive operators in Banach lattices. Studia Math. 131 (1998) 149-153. | MR 1636419 | Zbl 0939.47007
.[15] A remark on almost everywhere convergence of convolution powers. Illinois J. Math. 43 (1999) 465-479. | MR 1700602 | Zbl 0963.28014
.[16] The strong sweeping out property for convolution powers. Ergodic Theory Dynam. Systems 21 (2001) 115-119. | MR 1826663 | Zbl 0972.37002
.[17] On the pointwise behavior of iterates of a self-adjoint operator. J. Math. Mech. 18 (1968) 473-477. | MR 236354 | Zbl 0182.47103
.[18] Markov chains, skew products and ergodic theorems for “general” dynamic systems. Theory Probab. Appl. 10 (1965) 499-504. | MR 189123 | Zbl 0142.14405
.[19] Measures with real spectra. Invent. Math. 98 (1989) 311-330. | MR 1016267 | Zbl 0707.43002
.[20] Ergodic group actions. Arch. Math. (Basel) 47 (1986) 263-269. | MR 861875 | Zbl 0583.28006
.[21] Markov Processes. Structure and Asymptotic Behavior. Springer, Berlin, 1971. | MR 329037 | Zbl 0236.60002
.[22] Norm convergence of random walks on compact hypergroups. Math. Z. 214 (1993) 415-423. | MR 1245203 | Zbl 0796.60007
and .[23] An “Alternierende Verfahren” for general positive operators. Bull. Amer. Math. Soc. 68 (1962) 95-102. | MR 133847 | Zbl 0116.10403
.[24] Fourier Analysis on Groups. Interscience, New York, 1962. | MR 152834 | Zbl 0698.43001
.[25] On the maximal ergodic theorem. Proc. Natl. Acad. Sci. USA 47 (1961) 1894-1897. | MR 131517 | Zbl 0182.47102
.[26] Sets of multiplicity in locally compact Abelian groups. Ann. Inst. Fourier 16 (1966) 123-158. | Numdam | MR 212508 | Zbl 0145.03501
.