Soit une fonction réelle sur dont les dérivées partielles d’ordre trois existent, soit un vecteur de variables aléatoire réelles et soit un vecteur aléatoire Gaussien. Dans cet article, nous établissons par la méthode de Stein une majoration de la différence dans le cas où les coordonnées de ne sont pas nécessairement indépendantes; nous nous concentrons sur le cas de la grande dimension . Pour exprimer la structure de dépendance, nous utilisons des couplages de Stein, ce qui permet une large gamme d’applications, par exemple aux modèles d’urnes, au modèles avec dépendance locale, au modèle de Curie-Weiss, etc. Nous présentons aussi des applications au modèle de Sherrington-Kirkpatrick et à la percolation de dernier passage dans des rectangles étroits.
Let be a three times partially differentiable function on , let be a collection of real-valued random variables and let be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference in cases where the coordinates of are not necessarily independent, focusing on the high dimensional case . In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie-Weiss model, etc. We will also give applications to the Sherrington-Kirkpatrick model and last passage percolation on thin rectangles.
@article{AIHPB_2013__49_2_529_0, author = {R\"ollin, Adrian}, title = {Stein's method in high dimensions with applications}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {529-549}, doi = {10.1214/11-AIHP473}, mrnumber = {3088380}, zbl = {1287.60043}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_529_0} }
Röllin, Adrian. Stein's method in high dimensions with applications. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 529-549. doi : 10.1214/11-AIHP473. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_529_0/
[1] A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. 2005 (2005) 325-337. | MR 2131383 | Zbl 1136.60313
and .[2] A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 (1989) 125-145. | MR 1047781 | Zbl 0689.05042
, and .[3] A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105-112 (electronic). | MR 2150699 | Zbl 1111.60068
and .[4] Exact convergence rates in some martingale central limit theorems. Ann. Probab. 10 (1982) 672-688. | MR 659537 | Zbl 0494.60020
.[5] Universality in Sherrington-Kirkpatrick's spin glass model. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 215-222. | Numdam | MR 2199799 | Zbl 1099.82005
and .[6] A simple invariance theorem. Preprint, 2005. Available at http://arxiv.org/abs/math.PR/0508213.
.[7] A generalization of the Lindeberg principle. Ann. Probab. 34 (2006) 2061-2076. | MR 2294976 | Zbl 1117.60034
.[8] Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 257-283. | MR 2453473 | Zbl 1162.60310
and .[9] Non-normal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab. 21 (2011) 464-483. | MR 2807964 | Zbl 1216.60018
and .[10] Stein couplings for normal approximation. Preprint, 2010. Available at http://arxiv.org/abs/1003.6039.
and .[11] Some examples of normal approximations by Stein's method. In Random Discrete Structures (Minneapolis, MN, 1993) 25-44. IMA Vol. Math. Appl. 76. Springer, New York, 1996. | MR 1395606 | Zbl 0847.60015
and .[12] Stein's method for dependent random variables occurring in statistical mechanics. Electron. J. Probab. 15 (2010) 962-988. | MR 2659754 | Zbl 1225.60042
and .[13] Bulk universality for generalized Wigner matrices. Preprint, 2010. Available at arxiv.org/abs/1001.3453. | MR 2981427 | Zbl 1277.15026
, and .[14] Limit theorems for spectra of random matrices with martingale structure. Teor. Veroyatn. Primen. 51 (2006) 171-192. | MR 2324173 | Zbl 1118.15022
and .[15] On moderate deviations for martingales. Ann. Probab. 25 (1997) 152-183. | MR 1428504 | Zbl 0881.60026
.[16] Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR 1737991 | Zbl 0969.15008
.[17] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 (2001) 683-705. | MR 1810949 | Zbl 0978.15020
.[18] On Stein's method for multivariate normal approximation. In High Dimensional Probability V: The Luminy Volume 153-178. Inst. Math. Statist., Beachwood, OH, 2009. | MR 2797946 | Zbl 1243.60025
.[19] Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. 171 (2010) 295-341. | MR 2630040 | Zbl 1201.60031
, and .[20] A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret. Probab. 17 (2004) 573-603. | MR 2091552 | Zbl 1059.62050
.[21] Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 (2009) 2150-2173. | MR 2573554 | Zbl 1200.62010
and .[22] Some estimates for the rate of convergence in the CLT for martingales. II. Theory Probab. Appl. 44 (1999) 523-536. | MR 1805821 | Zbl 0969.60036
and .[23] A multivariate CLT for local dependence with rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56 (1996) 333-350. | MR 1379533 | Zbl 0859.60019
and .[24] Certain limit theorems for polynomials of degree two. Teor. Veroyatn. Primen. 18 (1973) 527-534. Actual title is “Some limit theorems for polynomials of degree two”. | MR 326803 | Zbl 0304.60037
.[25] The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41 (1962) 463-501. | MR 133183
.[26] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583-602. Univ. California Press, Berkeley, CA, 1972. | MR 402873 | Zbl 0278.60026
.[27] A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 (2006) 8977-8981. | MR 2240468 | Zbl 1148.82014
.[28] The Parisi formula. Ann. of Math. 163 (2006) 221-263. | MR 2195134 | Zbl 1137.82010
.[29] Mean Field Models for Spin Glasses. Volume I. Springer-Verlag, Berlin, 2010. | MR 2731561 | Zbl 1214.82002
.[30] Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011) 127-204. | MR 2784665 | Zbl 1217.15043
and .