Les promenades aléatoires en paysage aléatoire sont des processus définis par , où et sont deux suites indépendantes de variables aléatoires i.i.d. à valeurs dans et respectivement. Nous supposons que les lois de et appartiennent au domaine d’attraction normal de lois stables d’indice et . Quand et , un théorème limite fonctionnel a été prouvé dans (Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25) et un théorème limite local dans (Ann. Probab. To appear). Dans ce papier, nous prouvons la convergence en loi et un théorème limite local quand (i.e. ou ) et . Mentionnons que des théorèmes limites fonctionnels ont été établis dans (Ann. Probab. 17 (1989) 108-115) et récemment dans (An asymptotic variance of the self-intersections of random walks. Preprint) dans le cas particulier où (respectivement pour et ).
Random walks in random scenery are processes defined by , where and are two independent sequences of i.i.d. random variables with values in and respectively. We suppose that the distributions of and belong to the normal basin of attraction of stable distribution of index and . When and , a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25) and a local limit theorem in (Ann. Probab. To appear). In this paper, we establish the convergence in distribution and a local limit theorem when (i.e. or ) and . Let us mention that functional limit theorems have been established in (Ann. Probab. 17 (1989) 108-115) and recently in (An asymptotic variance of the self-intersections of random walks. Preprint) in the particular case when (respectively for and ).
@article{AIHPB_2013__49_2_506_0, author = {Castell, Fabienne and Guillotin-Plantard, Nadine and P\`ene, Fran\c coise}, title = {Limit theorems for one and two-dimensional random walks in random scenery}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {506-528}, doi = {10.1214/11-AIHP466}, mrnumber = {3088379}, zbl = {1278.60046}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_506_0} }
Castell, Fabienne; Guillotin-Plantard, Nadine; Pène, Françoise. Limit theorems for one and two-dimensional random walks in random scenery. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 506-528. doi : 10.1214/11-AIHP466. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_506_0/
[1] Scaling limit for trap models on . Ann. Probab. 35 (2007) 2356-2384. | MR 2353391 | Zbl 1134.60064
and .[2] Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1968. | MR 233396 | Zbl 0944.60003
.[3] A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108-115. | MR 972774 | Zbl 0679.60028
.[4] A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786-787 (in Russian). | MR 543530 | Zbl 0423.60025
.[5] Limit theorems for sums of independent random variables defined on a transient random walk. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244. | MR 535455 | Zbl 0417.60027
.[6] Probability. Addison-Wesley, Reading, 1968. | MR 229267 | Zbl 0174.48801
.[7] F. Castell, N. Guillotin-Plantard, F. Pène and Br. Schapira. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011) 2079-2118. | MR 2932665 | Zbl 1238.60028
[8] Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl. 117 (2007) 262-270. | MR 2290196 | Zbl 1107.60043
.[9] Moderate and small deviations for the ranges of one-dimensional random walks. J. Theor. Probab. 19 (2006) 721-739. | MR 2280517 | Zbl 1123.60015
.[10] An asymptotic variance of the self-intersections of random walks. Sib. Math. J. 52 (2011) 639-650. | MR 2883216 | Zbl 1227.60059
and .[11] Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353-367. Univ. California Press, Berkeley, CA, 1950. | MR 47272 | Zbl 0044.14001
and .[12] An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0138.10207
.[13] On the dynamics of trap models in . Preprint. Available at arXiv:1010.5418.
and .[14] Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001. | MR 1862393 | Zbl 0983.60005
and .[15] A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25. | MR 550121 | Zbl 0396.60037
and .[16] Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields. J. Statist. Phys. 69 (1992) 917-954. | MR 1192029 | Zbl 0893.60049
.[17] The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | MR 1106281 | Zbl 0729.60066
and .[18] Convergence rates in the strong law for associated random variables. Probab. Math. Statist. 20 (2000) 203-214. | MR 1785247 | Zbl 0987.60044
.[19] Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées. C. R. Acad. Sci. Paris 349 (2011) 89-91. | MR 2755704 | Zbl 1213.60089
and .[20] Is transport in porous media always diffusive? A counterxample. Water Resources Res. 16 (1980) 901-917.
and .[21] Principles of Random Walks. Van Nostrand, Princeton, NJ, 1964. | MR 171290 | Zbl 0175.16702
.[22] Limit theorems for stochastic processes. Theory Probab. Appl. 1 (1956) 261-290. | Zbl 0074.33802
.[23] Stochastic Process Limits. Springer Series in Operations Research. Springer, New York, 2002. | MR 1876437 | Zbl 0993.60001
.