The number of absorbed individuals in branching brownian motion with a barrier
Maillard, Pascal
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 428-455 / Harvested from Numdam

Nous étudions le mouvement brownien branchant sur-critique sur la droite réelle, issu de l’origine et avec une dérive constante c. Au point x>0, nous ajoutons une barrière absorbante, c’est-à-dire les individus qui touchent la barrière sont tués instantanément et sans se reproduire. Il est connu qu’il existe une dérive critique c 0 tel que ce processus s’éteint presque surement si et seulement si cc 0 . Dans ce cas, si on note par Z x le nombre d’individus absorbés en la barrière, nous donnons un équivalent de P(Z x =n) quand n tend vers l’infini. Si c=c 0 et la reproduction est déterministe, ceci améliore des résultats de L. Addario-Berry et N. Broutin [1] et E. Aïdékon [2] sur une conjecture de David Aldous concernant la progéniture totale d’une marche aléatoire branchante. La technique principale utilisée dans les preuves est l’analyse de la fonction génératrice de Z x au voisinage de son point singulier 1, basée sur des résultats classiques concernant certaines équations differéntielles dans le champ complexe.

We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift c. At the point x>0, we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring. It is known that there is a critical drift c 0 , such that this process becomes extinct almost surely if and only if cc 0 . In this case, if Z x denotes the number of individuals absorbed at the barrier, we give an asymptotic for P(Z x =n) as n goes to infinity. If c=c 0 and the reproduction is deterministic, this improves upon results of L. Addario-Berry and N. Broutin [1] and E. Aïdékon [2] on a conjecture by David Aldous about the total progeny of a branching random walk. The main technique used in the proofs is analysis of the generating function of Z x near its singular point 1, based on classical results on some complex differential equations.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/11-AIHP451
Classification:  Primary 60J80,  secondary,  34M35
@article{AIHPB_2013__49_2_428_0,
     author = {Maillard, Pascal},
     title = {The number of absorbed individuals in branching brownian motion with a barrier},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {428-455},
     doi = {10.1214/11-AIHP451},
     mrnumber = {3088376},
     zbl = {1281.60070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_428_0}
}
Maillard, Pascal. The number of absorbed individuals in branching brownian motion with a barrier. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 428-455. doi : 10.1214/11-AIHP451. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_428_0/

[1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Relat. Fields. 151 (2011) 265-295. | MR 2834719 | Zbl 1230.60091

[2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab. 15 (2010) 522-533. | MR 2737710 | Zbl 1226.60117

[3] D. Aldous. Power laws and killed branching random walk. Available at http://www.stat.berkeley.edu/~aldous/Research/OP/brw.html.

[4] K. B. Athreya and P. E. Ney. Branching Processes. Grundlehren Math. Wiss. 196. Springer, New York, 1972. | MR 373040 | Zbl 0259.60002

[5] L. Bieberbach. Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Zweite umgearbeitete und erweiterte Auflage. Grundlehren Math. Wiss. 66. Springer, Berlin, 1965. | MR 176133 | Zbl 0124.04603

[6] J. Biggins and A. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004) 544-581. | MR 2058149 | Zbl 1056.60082

[7] N. H. Bingham, and R. A. Doney. Asymptotic properties of supercritical branching processes. I. The Galton-Watson process. Adv. in Appl. Probab. 6 (1974) 711-731. | MR 362525 | Zbl 0297.60044

[8] A. N. Borodin and P. Salminen. Handbook of Brownian Motion-Facts and Formulae, 2nd edition. Probability and Its Applications. Birkhäuser, Basel, 2002. | MR 1912205 | Zbl 0859.60001

[9] C. Briot and J.-C. Bouquet. Recherches sur les propriétés des fonctions définies par des équations différentielles. J. Ecole Polyt. 36 (1856) 133-198. | JFM 10.0223.01

[10] B. Chauvin. Product martingales and stopping lines for branching Brownian motion. Ann. Probab. 19 (1991) 1195-1205. | MR 1112412 | Zbl 0738.60079

[11] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1971. | MR 270403 | Zbl 0219.60003

[12] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (1990) 216-240. | MR 1039294 | Zbl 0712.05004

[13] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Univ. Press, Cambridge, 2009. | MR 2483235 | Zbl 1165.05001

[14] T. E. Harris. The Theory of Branching Processes. Grundlehren Math. Wiss. 119. Springer, Berlin, 1963. | MR 163361 | Zbl 0117.13002

[15] E. Hille. Ordinary Differential Equations in the Complex Domain. Pure and Applied Mathematics. Wiley-Interscience, New York, 1976. | MR 499382 | Zbl 0343.34007

[16] L. Hörmander. An Introduction to Complex Analysis in Several Variables, revised edition. North-Holland Mathematical Library 7. North-Holland, Amsterdam, 1973. | Zbl 0271.32001

[17] M. Hukuhara, T. Kimura and T. Matuda. Equations différentielles ordinaires du premier ordre dans le champ complexe. Publications of the Mathematical Society of Japan 7. The Mathematical Society of Japan, Tokyo, 1961. | MR 124549 | Zbl 0101.30002

[18] E. L. Ince. Ordinary Differential Equations. Dover, New York, 1944. | JFM 53.0399.07 | MR 10757 | Zbl 0063.02971

[19] H. Kesten. Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9-47. | MR 494543 | Zbl 0383.60077

[20] A. E. Kyprianou. Travelling wave solutions to the K-P-P equation: Alternatives to Simon Harris' probabilistic analysis. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 53-72. | Numdam | MR 2037473 | Zbl 1042.60057

[21] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125-1138. | MR 1349164 | Zbl 0840.60077

[22] H. P. Mckean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28 (1975) 323-331. | MR 400428 | Zbl 0316.35053

[23] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes (Princeton, NJ, 1987) 223-242. Progr. Probab. Statist. 15. Birkhäuser Boston, Boston, MA. | MR 1046418 | Zbl 0652.60089

[24] R. Pemantle. Critical killed branching process tail probabilities. Manuscript, 1999.

[25] T. Yang, and Y.-X. Ren. Limit theorem for derivative martingale at criticality w.r.t. branching Brownian motion. Statist. Probab. Lett. 81 (2011) 195-200. | MR 2748182 | Zbl 05850242 | Zbl pre05850242