Hydrodynamical behavior of symmetric exclusion with slow bonds
Franco, Tertuliano ; Gonçalves, Patrícia ; Neumann, Adriana
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 402-427 / Harvested from Numdam

Nous considérons le processus d’exclusion dans le tore discret uni-dimensionnel avec N points, où tous les liens ont conductance un, sauf pour un nombre fini de liens lents qui ont conductance N -β , avec β[0,). Nous prouvons que l’évolution en temps de la densité empirique de particules, après un changement d’échelle diffusif, a un comportement différent selon la valeur du paramètre β. Si β[0,1), la limite hydrodynamique est donnée par l’équation de la chaleur usuelle. Si β=1, la limite est donnée par une équation parabolique avec un opérateur d dxd dW, où W est la mesure de Lebesgue sur le tore plus la somme des masses de Dirac en chaque point macroscopique relatif à un lien lent. Si β(1,), la limite est donnée par l’équation de la chaleur avec conditions au bord de Neumann, et ceci traduit l’absence de passage par les liens lents dans le continu.

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N -β , with β[0,). We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β. If β[0,1), the hydrodynamic limit is given by the usual heat equation. If β=1, it is given by a parabolic equation involving an operator d dxd dW, where W is the Lebesgue measure on the torus plus the sum of the Dirac measure supported on each macroscopic point related to the slow bond. If β(1,), it is given by the heat equation with Neumann’s boundary conditions, meaning no passage through the slow bonds in the continuum.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/11-AIHP445
Classification:  60K35,  26A24,  35K55
@article{AIHPB_2013__49_2_402_0,
     author = {Franco, Tertuliano and Gon\c calves, Patr\'\i cia and Neumann, Adriana},
     title = {Hydrodynamical behavior of symmetric exclusion with slow bonds},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {402-427},
     doi = {10.1214/11-AIHP445},
     mrnumber = {3088375},
     zbl = {1282.60095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_2_402_0}
}
Franco, Tertuliano; Gonçalves, Patrícia; Neumann, Adriana. Hydrodynamical behavior of symmetric exclusion with slow bonds. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 402-427. doi : 10.1214/11-AIHP445. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_2_402_0/

[1] T. Bodineau, B. Derrida and J. L. Lebowitz. A diffusive system driven by a battery or by a smoothly varying field. J. Stat. Phys. 140 (2010) 648-675. | MR 2670735 | Zbl 1210.82042

[2] L. Evans. Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI, 1998. | MR 1625845 | Zbl 0902.35002

[3] A. Faggionato. Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR 2357386 | Zbl 1144.60058

[4] A. Faggionato, M. Jara and C. Landim. Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633-667. | MR 2496445 | Zbl 1169.60326

[5] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195 (2010) 409-439. | MR 2592282 | Zbl 1192.82062

[6] T. Franco, A. Neumann and C. Landim. Large deviations for the one-dimensional exclusion process with a slow bond. Unpublished manuscript, 2010.

[7] T. Franco, A. Neumann and G. Valle. Hydrodynamic limit for a type of exclusion processes with slow bonds in dimension 2. J. Appl. Probab. 48 (2011) 333-351. | MR 2840303 | Zbl 1220.82076

[8] P. Gonçalves, C. Landim and C. Toninelli. Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 887-909. | Numdam | MR 2572156 | Zbl 1196.60163

[9] M. Jara. Hydrodynamic limit of particle systems in inhomogeneous media. In Dynamics, Games and Science II. M. Peixoto, A. Pinto and D. Rand (Eds). Springer, Berlin, 2011. | MR 2883297

[10] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[11] O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physic. Applied Math. Sci. 49. Springer, New York, 1985. | MR 793735 | Zbl 0588.35003

[12] G. Leoni. A First Course in Sobolev Spaces. Graduate Studies in Mathematics 105. American Mathematical Society, Providence, RI, 2009. | MR 2527916 | Zbl 1180.46001

[13] T. Seppäläinen. Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102 (2001) 69-96. | MR 1819699 | Zbl 1036.82018

[14] C. Stone. Limit theorems for random walks, birth and death processes, and diffusion processes. Ill. J. Math. 7 (1963) 638-660. | MR 158440 | Zbl 0118.13202

[15] F. Valentim. Hydrodynamic limit of gradient exclusion processes with conductances. Ann. Inst. Henri Poincaré Probab. Stat. To appear. | Numdam | MR 2919203 | Zbl 1254.60093