Nous étudions la distribution des valeurs propres qui sortent de l'amas du spectre de matrices de Wigner deformées par une matrice de rang fini sous l'hypothèse que les valeurs absolues des éléments non diagonaux aient un moment d'ordre cinq uniformément borné et que valeurs absolues des éléments diagonaux aient un moment d'ordre trois uniformément borné. En utilisant des travaux récents (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) et des idées de (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), nous étendons les résultats de Capitaine, Donati-Martin et Féral (Ann. Probab. 37 (2009) 1-47; Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133).
We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the absolute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the results by Capitaine, Donati-Martin, and Féral (Ann. Probab. 37 (2009) 1-47; Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133).
@article{AIHPB_2013__49_1_64_0, author = {Pizzo, Alessandro and Renfrew, David and Soshnikov, Alexander}, title = {On finite rank deformations of Wigner matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {64-94}, doi = {10.1214/11-AIHP459}, mrnumber = {3060148}, zbl = {1278.60014}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_64_0} }
Pizzo, Alessandro; Renfrew, David; Soshnikov, Alexander. On finite rank deformations of Wigner matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 64-94. doi : 10.1214/11-AIHP459. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_64_0/
[1] An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, New York, 2010. | MR 2760897 | Zbl 1184.15023
, and .[2] Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 (1999) 611-677. | MR 1711663 | Zbl 0949.60077
.[3] Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 447-474. | Numdam | MR 2451053 | Zbl 1274.62129
and .[4] Necessary and sufficient conditions for the almost sure convergence of the largest eigenvalue of Wigner matrices. Ann. Probab. 16 (1988) 1729-1741. | MR 958213 | Zbl 0677.60038
and .[5] Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 (2006) 1382-1408. | MR 2279680 | Zbl 1220.15011
and .[6] Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33 (2005) 1643-1697. | MR 2165575 | Zbl 1086.15022
, and .[7] Wigner matrices. In Oxford Handbook on Random Matrix Theory. G. Akemann, J. Baik and P. Di Francesco (Eds). Oxford Univ. Press, New York, 2011. | MR 2932641 | Zbl 1236.15063
and .[8] The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Unpublished manuscript. Available at arXiv:0910.2120v3. | Zbl 1226.15023
and .[9] Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Unpublished manuscript. Available at arXiv:1009.0145. | MR 2835249 | Zbl 1245.60007
, and .[10] Large deviations of the extreme eigenvalues of random deformations of matrices. Unpublished manuscript. Available at arXiv:1009.0135v2. | MR 3000560 | Zbl 1261.15042
, and .[11] The largest eigenvalue of finite rank deformation of large Wigner matrices: Convergence and non universality of the fluctuations. Ann. Probab. 37 (2009) 1-47. | MR 2489158 | Zbl 1163.15026
, and .[12] Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133. | Numdam | MR 2919200 | Zbl 1237.60007
, and .[13] D. Féral and M. Février. Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices. Unpublished manuscript. Available at arXiv:1006.3684. | Zbl 1245.15037
,[14] Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementary problems. SIAM J. Optim. 13 (2003) 960-985. | MR 2005912 | Zbl 1076.90042
, and .[15] The functional calculus. J. Lond. Math. Soc. 52 (1995) 166-176. | MR 1345723 | Zbl 0858.47012
.[16] Probability. Theory and Examples, 4th edition. Cambridge Univ. Press, New York, 2010. | MR 2722836 | Zbl 1202.60001
.[17] Rigidity of eigenvalues of generalized Wigner matrices. Unpublished manuscript. Available at arXiv:1007.4652. | MR 2871147 | Zbl 1238.15017
, and .[18] The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272 (2007) 185-228. | MR 2291807 | Zbl 1136.82016
and .[19] The eigenvalues of random symmetric matrices. Combinatorica 1 (1981) 233-241. | Zbl 0494.15010
and .[20] Lectures on logarithmic Sobolev inequalities. In Seminaire de Probabilités XXXVI. Lecture Notes in Math. 1801. Springer, Paris, 2003. | Numdam | MR 1971582 | Zbl 1125.60111
and .[21] Equation de Schrödinger avec champ magnetique et equation de Harper. In Schrödinger Operators 118-197. H. Holden and A. Jensen (Eds). Lecture Notes in Physics 345. Springer, Berlin, 1989. | MR 1037319 | Zbl 0699.35189
and .[22] Universality for certain Hermitian Wigner matrices under weak moment conditions. Unpublished manuscript. Available at arXiv:0910.4467. | Numdam | MR 2919198 | Zbl 1279.60014
.[23] Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 (1996) 5033-5060. | MR 1411619 | Zbl 0866.15014
, and .[24] Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab. 12 (2007) 1131-1150. | MR 2336602 | Zbl 1127.60022
.[25] On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries. Unpublished manuscript. Available at arXiv:1104.1663v3. | MR 3090549 | Zbl 1280.15021
, and .[26] Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 (2007) 1617-1642. | MR 2399865 | Zbl 1134.62029
.[27] The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 (2006) 127-173. | MR 2221787 | Zbl 1088.15025
.[28] Fluctuations of matrix entries of regular functions of Wigner matrices. Unpublished manuscript. Available at arXiv:1103.1170v3. | MR 2880032 | Zbl 1246.60014
, and .[29] Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1978. | MR 493421 | Zbl 0242.46001
and .[30] Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Zh. Mat. Fiz. Anal. Geom. 7 (2011) 176-192, 197, 199. | MR 2829615 | Zbl 1228.15016
.[31] Letter from March 1, 2011.
.[32] Outliers in the spectrum of iid matrices with bounded rank perturbations. Unpublished manuscript. Available at arXiv:1012.4818v2. | MR 3010398 | Zbl 1261.60009
.