Notre but est d’étudier des propriétés de processus à accroissements stationnaires et indépendants sous une -espérance. Comme application, nous démontrons la caractérisation de la martingale de -mouvement Brownien et fournissons un théorème de décomposition trajectorielle pour le -mouvement Brownien généralisé.
Our purpose is to investigate properties for processes with stationary and independent increments under -expectation. As applications, we prove the martingale characterization of -Brownian motion and present a pathwise decomposition theorem for generalized -Brownian motion.
@article{AIHPB_2013__49_1_252_0, author = {Song, Yongsheng}, title = {Characterizations of processes with stationary and independent increments under $G$-expectation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {252-269}, doi = {10.1214/12-AIHP492}, mrnumber = {3060156}, zbl = {1282.60050}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_252_0} }
Song, Yongsheng. Characterizations of processes with stationary and independent increments under $G$-expectation. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 252-269. doi : 10.1214/12-AIHP492. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_252_0/
[1] Function spaces and capacity related to a sublinear expectation: Application to -Brownian motion pathes. Potential Anal. 34 (2011) 139-161. | MR 2754968 | Zbl 1225.60057
, and .[2] On representation theorem of -expectations and paths of -Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 539-546. | MR 2506990 | Zbl 1190.60043
and .[3] -expectation, -Brownian motion and related stochastic calculus of Itô type. In Stochastic Analysis and Applications 541-567. Abel Symp. 2. Springer, Berlin, 2007. | MR 2397805 | Zbl 1131.60057
.[4] -Brownian motion and dynamic risk measure under volatility uncertainty. Available at arXiv:0711.2834v1 [math.PR], 2007. | MR 2397805
.[5] Multi-dimensional -Brownian motion and related stochastic calculus under -expectation. Stochastic Process. Appl. 118 (2008) 2223-2253. | MR 2474349 | Zbl 1158.60023
.[6] A new central limit theorem under sublinear expectations. Available at arXiv:0803.2656v1 [math.PR], 2008.
.[7] Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A 52 (2009) 1391-1411. | MR 2520583 | Zbl 1184.60009
.[8] Nonlinear expectations and stochastic calculus under uncertainty. Available at arXiv:1002.4546v1 [math.PR], 2010. | MR 2827899
.[9] Martingale representation theorem under -expectation. Stochastic Process. Appl. 121 (2011) 265-287. | MR 2746175 | Zbl 1228.60070
, and .[10] Some properties on -evaluation and its applications to -martingale decomposition. Sci. China Math. 54 (2011) 287-300. | MR 2771205 | Zbl 1225.60058
.[11] Properties of hitting times for -martingales and their applications. Stochastic Process. Appl. 121 (2011) 1770-1784. | MR 2811023 | Zbl 1231.60054
.[12] Uniqueness of the representation for -martingales with finite variation. Electron. J. Probab. 17 (2012) 1-15. | MR 2900465 | Zbl 1244.60046
.[13] Martingale characterization of -Brownian motion. Stochastic Process. Appl. 119 (2009) 232-248. | MR 2485026 | Zbl 1168.60024
and .