Nous établissons un principe de Grandes Déviations pour des diffusions réfléchies obliquement sur le bord d'un domaine régulier lorsque la direction de la réflection est Lipschitz. La fonction de taux s'exprime comme la fonction valeur d'un problème d'arrêt optimal et est compacte. Nous utilisons des techniques de solutions de viscosité. Les probabilités recherchées sont interprétées comme des solutions de certaines EDPs, leur transformées logarithmiques donnent lieu à de nouvelles équations dans lesquelles il est aisé de passer à la limites. Enfin les fonctionnelles d'action sont identifiées comme étant les solutions des dites équations limite.
We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.
@article{AIHPB_2013__49_1_160_0, author = {Kobylanski, Magdalena}, title = {Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {160-181}, doi = {10.1214/11-AIHP444}, mrnumber = {3060152}, zbl = {1270.60032}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_160_0} }
Kobylanski, Magdalena. Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 160-181. doi : 10.1214/11-AIHP444. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_160_0/
[1] Large deviations and queing networks: Methods for rate functional identification. Stochastic Process. Appl. 84 (1999) 255-296. | MR 1719274 | Zbl 0996.60036
and .[2] Grandes déviations et applications. In Ecole d'Eté de Probabilités de Saint-Flour VIII-1978 1-176. Lecture Notes in Math. 774. Springer, Berlin, 1980. | MR 590626 | Zbl 0435.60028
.[3] Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques et Applications 17. Springer, Berlin, 1994. | MR 1613876 | Zbl 0819.35002
.[4] Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations J. Differential Equations 106 (1993) 90-106. | MR 1249178 | Zbl 0786.35051
.[5] Large deviations estimates for the exit probabilities of a diffusion process through some vanishing parts of the boundary. Adv. Differential Equations 2 (1997) 39-84. | MR 1424763 | Zbl 1023.60502
and .[6] Remarques sur les problèmes de réflexion oblique. C. R. Math. Acad. Sci. Paris 320 (1995) 69-74. | MR 1320834 | Zbl 0831.60068
and .[7] Discontinuous solutions of deterministic optimal stopping time problems. Math. Modelling Numer. Anal. 21 (1987) 557-579. | Numdam | MR 921827 | Zbl 0629.49017
and .[8] Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133-1148. | MR 957658 | Zbl 0674.49027
and .[9] Comparison principle for Dirichlet type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990) 21-44. | MR 1014943 | Zbl 0691.49028
and .[10] Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim. 49 (2011) 948-962. | MR 2806570 | Zbl 1228.49028
and .[11] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR 1118699 | Zbl 0755.35015
, and .[12] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | MR 690039 | Zbl 0599.35024
and .[13] Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston, MA, 1993. | MR 1202429 | Zbl 0793.60030
and .[14] A Weak Convergence Approch to the Theory of Large Deviations. Wiley Ser. Probab. Stat. Wiley, New York, 1997. | MR 1431744 | Zbl 0904.60001
and .[15] On oblique derivative problems for fully nonlinear second-order equations on nonsmooth domains. Nonlinear Anal. 15 (1990) 1123-1138. | MR 1082287 | Zbl 0736.35044
and .[16] On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics Stochastics Rep. 35 (1991) 31-62. | MR 1110990 | Zbl 0721.60062
and .[17] On oblique derivative problems for fully nonlinear second-order elliptic PDE's on domains with corners. Hokkaido Math. J. 20 (1991) 135-164. | MR 1096165 | Zbl 0741.35019
and .[18] SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21 (1993) 554-580. | MR 1207237 | Zbl 0787.60099
and .[19] A probabilistic approach to the reduite in optimal stopping. Probab. Math. Statist. 13 (1992) 97-121. | MR 1199792 | Zbl 0777.60034
, and .[20] A PDE approach to some aymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poncaré Anal. Non Linéaire 2 (1985) 1-20. | Numdam | MR 781589 | Zbl 0601.60076
and .[21] Large Deviations for Stochastic Processes. Mathematical Surv. Monogr. 131. Amer. Math. Soc., Providence, RI, 2006. | MR 2260560 | Zbl 1113.60002
and .[22] Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4 (1978) 329-346. | MR 512217 | Zbl 0398.93068
.[23] Controlled Markov Processes and Viscosity Solutions. Applications of Math. 25. Springer, New York, 1993. | MR 1199811 | Zbl 0773.60070
and .[24] A PDE-viscosity solution approach to some problems of large deviations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (1986) 171-192. | Numdam | MR 876121 | Zbl 0622.60032
and .[25] Random Perturbations of Dynamical Systems. Comp. Studies in Math. 260. Springer, New York, 1984. | MR 722136 | Zbl 0522.60055
and .[26] Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE's. Duke Math. J. 62 (1991) 633-661. | MR 1104812 | Zbl 0733.35020
.[27] Quelques applications de méthodes d'analyse non-linéaire à la théorie des processus stochastiques. Ph.D. dissertation, l'Université de Tours, 1998.
.[28] Optimal multiple stopping time problem. Ann. Appl. Probab. 21 (2011) 1365-1399. | MR 2857451 | Zbl 1235.60040
, and .[29] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I: The dynamic programming principle and applications; Part II: Viscosity solutions and uniqueness. Comm. Partial Defferential Equations 8 (1983) 1101-1174; 1229-1276. | MR 709164 | Zbl 0716.49023 | Zbl 0716.49022
.[30] Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | MR 745330 | Zbl 0598.60060
and .[31] A large deviations approach to optimal long term investment. Finance Stoch. 7 (2003) 169-195. | MR 1968944 | Zbl 1035.60023
.[32] An Introduction to the Theory of Large Deviations. Springer, New York, 1984. | MR 755154 | Zbl 0552.60022
.[33] Large Deviations and Applications. CBMS-NSF Regional Conf. Ser. Appl. Math. 46. SIAM, Philadelphia, PA, 1984. | MR 758258 | Zbl 0549.60023
.