Dans ce papier, nous étudions des problèmes de transport optimal pour des mesures aléatoires multifractales. Puisque ces mesures sont beaucoup moins régulières que ce que la théorie requiert habituellement, nous introduisons une nouvelle notion de transport qui peut être vue intuitivement comme du transport à étapes multiples. En application, nous construisons des changements de temps multifractals et nous établissons l'existence de métriques aléatoires pour lesquelles les formes volume sont des mesures aléatoires multifractales.
In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.
@article{AIHPB_2013__49_1_119_0, author = {Rhodes, R\'emi and Vargas, Vincent}, title = {Optimal transportation for multifractal random measures and applications}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, volume = {49}, year = {2013}, pages = {119-137}, doi = {10.1214/11-AIHP443}, mrnumber = {3060150}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_119_0} }
Rhodes, Rémi; Vargas, Vincent. Optimal transportation for multifractal random measures and applications. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 119-137. doi : 10.1214/11-AIHP443. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_119_0/
[1] Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449-475. | MR 2021198 | Zbl 1032.60046
and .[2] KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2009) 653-662. | MR 2506765 | Zbl 1170.83006
and .[3] Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333-393. | MR 2819163 | Zbl 1226.81241
and .[4] Sur le chaos de Lévy d’indice . Ann. Sci. Math. Québec 21 (1997) 53-66. | Zbl 0884.60040
.[5] Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105-150. | MR 829798 | Zbl 0596.60041
.[6] KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358-371. | Numdam | MR 2870520 | Zbl 1268.60070
and .[7] Multidimensional multifractal random measures. Electron. J. Probab. 15 (2010) 241-258. | MR 2609587 | Zbl 1201.60046
and .[8] Optimal Transport, Old and New. Grundlehren Math. Wiss. 338. Springer, Berlin. | MR 2459454 | Zbl 1156.53003
.[9] Topics in Optimal Transportations. Grad. Stud. Math. 58. Amer. Math. Soc., Providence, RI, 2003. | MR 1964483 | Zbl 1106.90001
.[10] Multiplicative cascades: Dimension spectra and dependence. J. Fourier Anal. Appl. (Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)) (1995) 589-609. | MR 1364911 | Zbl 0889.60050
and .