Optimal transportation for multifractal random measures and applications
Rhodes, Rémi ; Vargas, Vincent
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013), p. 119-137 / Harvested from Numdam

Dans ce papier, nous étudions des problèmes de transport optimal pour des mesures aléatoires multifractales. Puisque ces mesures sont beaucoup moins régulières que ce que la théorie requiert habituellement, nous introduisons une nouvelle notion de transport qui peut être vue intuitivement comme du transport à étapes multiples. En application, nous construisons des changements de temps multifractals et nous établissons l'existence de métriques aléatoires pour lesquelles les formes volume sont des mesures aléatoires multifractales.

In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.

Publié le : 2013-01-01
DOI : https://doi.org/10.1214/11-AIHP443
Classification:  60G57,  49J55,  28A80,  28A75
@article{AIHPB_2013__49_1_119_0,
     author = {Rhodes, R\'emi and Vargas, Vincent},
     title = {Optimal transportation for multifractal random measures and applications},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {49},
     year = {2013},
     pages = {119-137},
     doi = {10.1214/11-AIHP443},
     mrnumber = {3060150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2013__49_1_119_0}
}
Rhodes, Rémi; Vargas, Vincent. Optimal transportation for multifractal random measures and applications. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) pp. 119-137. doi : 10.1214/11-AIHP443. http://gdmltest.u-ga.fr/item/AIHPB_2013__49_1_119_0/

[1] E. Bacry and J. F. Muzy. Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449-475. | MR 2021198 | Zbl 1032.60046

[2] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2009) 653-662. | MR 2506765 | Zbl 1170.83006

[3] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333-393. | MR 2819163 | Zbl 1226.81241

[4] A. H. Fan. Sur le chaos de Lévy d’indice 0<α<1. Ann. Sci. Math. Québec 21 (1997) 53-66. | Zbl 0884.60040

[5] J.-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105-150. | MR 829798 | Zbl 0596.60041

[6] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358-371. | Numdam | MR 2870520 | Zbl 1268.60070

[7] R. Rhodes and V. Vargas. Multidimensional multifractal random measures. Electron. J. Probab. 15 (2010) 241-258. | MR 2609587 | Zbl 1201.60046

[8] C. Villani. Optimal Transport, Old and New. Grundlehren Math. Wiss. 338. Springer, Berlin. | MR 2459454 | Zbl 1156.53003

[9] C. Villani. Topics in Optimal Transportations. Grad. Stud. Math. 58. Amer. Math. Soc., Providence, RI, 2003. | MR 1964483 | Zbl 1106.90001

[10] E. C. Waymire and S. C. William. Multiplicative cascades: Dimension spectra and dependence. J. Fourier Anal. Appl. (Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)) (1995) 589-609. | MR 1364911 | Zbl 0889.60050