Excursions of diffusion processes and continued fractions
Comtet, Alain ; Tourigny, Yves
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011), p. 850-874 / Harvested from Numdam

Il est bien connu que les excursions d'un processus de diffusion peuvent être étudiées en considérant une certaine équation de Riccati associée au processus. On montre que, dans beaucoup de cas intéressants, certaines solutions de cette équation de Riccati peuvent être développées en fraction continue. On examine le contenu probabiliste de ce développement. Ces résultats sont illustrés par quelques exemples de diffusions en milieux aléatoires et déterministes.

It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.

Publié le : 2011-01-01
DOI : https://doi.org/10.1214/10-AIHP390
Classification:  60J60,  30B70
@article{AIHPB_2011__47_3_850_0,
     author = {Comtet, Alain and Tourigny, Yves},
     title = {Excursions of diffusion processes and continued fractions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {47},
     year = {2011},
     pages = {850-874},
     doi = {10.1214/10-AIHP390},
     mrnumber = {2841077},
     zbl = {1266.60138},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2011__47_3_850_0}
}
Comtet, Alain; Tourigny, Yves. Excursions of diffusion processes and continued fractions. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) pp. 850-874. doi : 10.1214/10-AIHP390. http://gdmltest.u-ga.fr/item/AIHPB_2011__47_3_850_0/

[1] N. I. Akhiezer. The Classical Moment Problem and Some Related Questions in Analysis. Fitzmatgiz, Moscow, 1961; English transl., Oliver and Boyd, Edinburgh, 1965. | MR 184042 | Zbl 0135.33803

[2] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Univ. Press, Cambridge, 2004. | MR 2072890 | Zbl 1200.60001

[3] C. Aslangul, N. Pottier and D. Saint-James. Random walk in a one-dimensional random medium. Phys. A 164 (1990) 52-80. | MR 1052378

[4] C. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York, 1978. | MR 538168 | Zbl 0938.34001

[5] J. Bernasconi, S. Alexander and R. Orbach. Classical diffusion in one-dimensional disordered lattice. Phys. Rev. Lett. 41 (1978) 185-187.

[6] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR 1406564 | Zbl 0938.60005

[7] P. Biane. Comparaison entre temps d'atteinte et temps de séjour de certaines diffusions réelles. In Sém. Probabilités Strasbourg, XIX 291-296. Lecture Notes in Math. 1123. Springer, Berlin, 1985. | Numdam | MR 889490 | Zbl 0562.60085

[8] P. Biane and M. Yor. Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359-377. | Numdam | MR 898500 | Zbl 0623.60099

[9] G. Bordes and B. Roehner. Application of Stieltjes theory for S-fractions to birth and death processes. Adv. in Appl. Probab. 15 (1983) 507-530. | MR 706615 | Zbl 0511.60080

[10] A. N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae. Birkhäuser, Basel, 1996. | MR 1477407 | Zbl 1012.60003

[11] J. P. Bouchaud, A. Comtet, A. Georges and P. Le Doussal. Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. 201 (1990) 285-341. | MR 1062911

[12] M. M. Crum. Associated Sturm-Liouville systems. Quart. J. Math. Oxford (2) 6 (1955) 121-127. | MR 72332 | Zbl 0065.31901

[13] A. K. Common and D. E. Roberts. Solutions of the Riccati equation and their relation to the Toda lattice. J. Phys. A Math. Gen. 19 (1986) 1889-1898. | MR 851489 | Zbl 0628.34008

[14] Z. Ciesielski and S. J. Taylor. First passage times and Sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. | MR 143257 | Zbl 0121.13003

[15] M. G. Darboux. Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. Paris 94 (1882) 1456-1459. | JFM 14.0264.01

[16] F. Den Hollander. Large Deviations. Amer. Math. Soc., Providence, RI, 2000. | MR 1739680 | Zbl 0949.60001

[17] H. Dette, J. A. Fill, J. Pitman and W. J. Studden. Wall and Siegmund duality relations for birth and death chains with reflecting barrier. J. Theoret. Probab. 10 (1997) 349-374. | MR 1455149 | Zbl 0894.60076

[18] C. Donati-Martin and M. Yor. Some explicit Krein representations of certain subordinators, including the Gamma process. Publ. Res. Inst. Math. Sci. 42 (2006) 879-895. | MR 2289152 | Zbl 1123.60028

[19] H. Dym and H. P. Mckean. Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic Press, New York, 1976. | MR 448523 | Zbl 0327.60029

[20] L. Euler. De fractionibus continuis dissertatio. Comm. Acad. Sci. Petropol. 9 (1744) 98-137; English transl.: M. Wyman and B. Wyman. An essay on continued fractions. Math. Systems Theory 18 (1985) 295-328. | MR 818419

[21] P. Flajolet and F. Guillemin. The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions. Adv. in Appl. Probab. 32 (2000) 750-778. | MR 1788094 | Zbl 0966.60069

[22] H. L. Frisch and S. P. Lloyd. Electron levels in a one-dimensional lattice. Phys. Rev. 120 (1960) 1175-1189. | Zbl 0093.23202

[23] F. Guillemin and D. Pinchon. Excursions of birth and death processes, orthogonal polynomials, and continued fractions. J. Appl. Probab. 36 (1999) 752-770. | MR 1737051 | Zbl 0947.60072

[24] M. E. H. Ismail and D. H. Kelker. Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10 (1979) 884-901. | MR 541088 | Zbl 0427.60021

[25] K. Itô and H. P. Mckean. Diffusion Processes and Their Sample Paths. Springer, New York, 1974. | MR 345224 | Zbl 0285.60063

[26] K. M. Jansons. Excursions into a new duality relation for diffusion processes. Elect. Comm. Probab. 1 (1996) 65-69. | MR 1423906 | Zbl 0890.60090

[27] S. Karlin and J. L. Mcgregor. The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 (1957) 489-546. | MR 91566 | Zbl 0091.13801

[28] F. B. Knight. Characterisation of the Lévy measures of inverse local times of gap diffusion. In Seminar on Stochastic Processes 53-78. Birkhäuser, Basel, 1981. | MR 647781 | Zbl 0518.60083

[29] F. B. Knight. Essentials of Brownian Motion and Diffusion. Amer. Math. Soc., Providence, RI, 1981. | MR 613983 | Zbl 0458.60002

[30] S. Kotani. On asymptotic behaviour of the spectra of a one-dimensional Hamiltonian with a certain random coefficient. Publ. RIMS Kyoto Univ. 12 (1976) 447-492. | MR 433610 | Zbl 0362.34043

[31] K. Kawazu and H. Tanaka. A diffusion process in a Brownian environment with drift. J. Math. Soc. Japan 49 (1997) 189-211. | MR 1601361 | Zbl 0914.60058

[32] S. Kotani and S. Watanabe. Krein's spectral theory of strings and generalized diffusion processes. In Functional Analysis in Markov Processes 235-259. Springer, New York, 1982. | MR 661628 | Zbl 0496.60080

[33] G. Letac and W. Seshadri. A characterisation of the generalised inverse Gaussian distribution by continued fractions. Z. Wahrsch. Werw. Gebiete 62 (1983) 485-489. | MR 690573 | Zbl 0488.60020

[34] S. N. Majumdar and A. Comtet. Exact asymptotic results for persistence in the Sinai problem with arbitrary drift. Phys. Rev. E 66 (2002) 061105-061116. | MR 1953923

[35] J. Marklof, Y. Tourigny and L. Wolowski. Explicit invariant measures for products of random matrices. Trans. Amer. Math. Soc. 360 (2008) 3391-3427. | MR 2386231 | Zbl 1153.15028

[36] J. Marklof, Y. Tourigny and L. Wolowski. Padé approximants of random Stieltjes functions. Proc. Roy. Soc. A 463 (2007) 2813-2832. | MR 2360181 | Zbl 1139.82023

[37] E. M. Nikishin and W. N. Sorokin. Rational Approximation and Orthogonality. Nauk, Moscow, 1988; English transl., Amer. Math. Soc., Providence, RI, 1991. | MR 953788 | Zbl 0733.41001

[38] B. Øksendal. Stochastic Differential Equations. Springer, Berlin, 1998.

[39] J. Pitman and M. Yor. Bessel processes and infinitely divisible laws. In Stochastic Integrals 285-370. Lecture Notes in Math. 851. Springer, Berlin, 1981. | MR 620995 | Zbl 0469.60076

[40] J. Pitman and M. Yor. Hitting, occupation and inverse local times of one-dimensional diffusions: Martingale and excursion approaches. Bernoulli 9 (2003) 1-24. | MR 1963670 | Zbl 1024.60032

[41] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1999. | MR 1725357 | Zbl 0917.60006

[42] P. Salminen. One-dimensional diffusions and their exit spaces. Math. Scand. 54 (1984) 209-220. | MR 757463 | Zbl 0557.60062

[43] F. Soucaliuc. Réflection entre deux diffusions conjuguées. C. R. Acad. Sci. Paris Ser. I 334 (2002) 1119-1124. | MR 1911657 | Zbl 1005.60085

[44] T. J. Stieltjes. Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894) 1-122. | JFM 25.0326.01 | MR 1508159

[45] B. Tóth. Generalized Ray-Knight theory and limit theorems for self-interacting random walks on ℤ1. Ann. Probab. 24 (1996) 1324-1367. | MR 1411497 | Zbl 0863.60020