Trends to equilibrium in total variation distance
Cattiaux, Patrick ; Guillin, Arnaud
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009), p. 117-145 / Harvested from Numdam

Nous étudions ici la vitesse de convergence, pour la distance en variation totale, de diffusions ergodiques dont la loi initiale satisfait une intégrabilité donnée. Nous présentons différentes approches basées sur l’utilisation d’inégalités fonctionnelles. La première étape consiste à donner une borne générale à la Pinsker. Cette borne permet alors d’utiliser, en les combinant à une procedure de troncature, des inégalités usuelles (telles Poincaré ou Poincaré faibles,…). Dans un deuxième temps nous introduisons de nouvelles inégalités appelées ψ que nous caractérisons à l’aide de condition de type capacité-mesure et d’inégalités de type F-Sobolev. Une étude directe de la distance de Hellinger est également proposée. Pour conclure, une approche dynamique basée sur le renversement du rôle du semigroupe de diffusion et de la mesure invariante permet d'obtenir de nouvelles bornes intéressantes.

This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities ψ . These ψ -inequalities are characterized through measure-capacity conditions and F-Sobolev inequalities. A direct study of the decay of Hellinger distance is also proposed. Finally we show how a dynamic approach based on reversing the role of the semi-group and the invariant measure can lead to interesting bounds.

Publié le : 2009-01-01
DOI : https://doi.org/10.1214/07-AIHP152
Classification:  26D10,  60E15
@article{AIHPB_2009__45_1_117_0,
     author = {Cattiaux, Patrick and Guillin, Arnaud},
     title = {Trends to equilibrium in total variation distance},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {45},
     year = {2009},
     pages = {117-145},
     doi = {10.1214/07-AIHP152},
     mrnumber = {2500231},
     zbl = {1202.26028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2009__45_1_117_0}
}
Cattiaux, Patrick; Guillin, Arnaud. Trends to equilibrium in total variation distance. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) pp. 117-145. doi : 10.1214/07-AIHP152. http://gdmltest.u-ga.fr/item/AIHPB_2009__45_1_117_0/

[1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris, 2000. | MR 1845806 | Zbl 0982.46026

[2] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d'été de Probabilités de St-Flour 1992 1-114. Lecture Notes in Math. 1581. Springer, Berlin, 1994. | MR 1307413 | Zbl 0856.47026

[3] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008) 727-759. | MR 2381160 | Zbl 1146.60058

[4] D. Bakry, M. Ledoux and F. Y. Wang. Perturbations of inequalities under growth conditions. J. Math. Pures Appl. 87 (2007) 394-407. | MR 2317340 | Zbl 1120.60070

[5] F. Barthe, P. Cattiaux and C. Roberto. Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39-60. | MR 2173316 | Zbl 1094.60010

[6] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2006) 993-1066. | MR 2320410 | Zbl 1118.26014

[7] F. Barthe, P. Cattiaux and C. Roberto. Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12 (2007) 1212-1237. | MR 2346509 | Zbl 1132.26005

[8] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481-497. | MR 2052235 | Zbl 1072.60008

[9] L. Bertini and B. Zegarlinski. Coercive inequalities for Gibbs measures. J. Funct. Anal. 162 (1999) 257-286. | MR 1682059 | Zbl 0932.60061

[10] P. Cattiaux. A pathwise approach of some classical inequalities. Potential Anal. 20 (2004) 361-394. | MR 2032116 | Zbl 1050.47041

[11] P. Cattiaux. Hypercontractivity for perturbed diffusion semi-groups. Ann. Fac. Sc. Toulouse 14 (2005) 609-628. | Numdam | MR 2188585 | Zbl 1089.60520

[12] P. Cattiaux, I. Gentil and A. Guillin. Weak logarithmic-Sobolev inequalities and entropic convergence. Probab. Theory Related Fields 139 (2007) 563-603. | MR 2322708 | Zbl 1130.26010

[13] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Statist. 12 (2008) 12-29. | Numdam | MR 2367991 | Zbl pre05216895

[14] P. Cattiaux and A. Guillin. On quadratic transportation cost inequalities. J. Math. Pures Appl. 88 (2006) 341-361. | MR 2257848 | Zbl 1118.58017

[15] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Available at ArXiv.math.PR/0703451, 2007. Stochastic Process. Appl. To appear. | MR 2500231

[16] E. B. Davies. Heat Kernels and Spectral Theory. Cambridge Univ. Press, 1989. | MR 990239 | Zbl 0699.35006

[17] P. Del Moral, M. Ledoux and L. Miclo. On contraction properties of Markov kernels. Probab. Theory Related Fields 126 (2003) 395-420. | MR 1992499 | Zbl 1030.60060

[18] J. Dolbeault, I. Gentil, A. Guillin and F.Y. Wang. Lq-functional inequalities and weighted porous media equations. Potential Anal. 28 (2008) 35-59. | MR 2366398 | Zbl 1148.26018

[19] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f-ergodic strong Markov processes. Preprint. Available at ArXiv.math.ST/0605791, 2006. | MR 2499863 | Zbl 1163.60034

[20] N. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671-1691. | MR 1379163 | Zbl 0852.60075

[21] G. Fort and G. O. Roberts. Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565-1589. | MR 2134115 | Zbl 1072.60057

[22] O. Kavian, G. Kerkyacharian and B. Roynette. Some remarks on ultracontractivity. J. Funct. Anal. 111 (1993) 155-196. | MR 1200640 | Zbl 0807.47027

[23] R. Latała and K. Oleszkiewicz. Between Sobolev and Poincaré. In Geometric Aspects of Functional Analysis 147-168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR 1796718 | Zbl 0986.60017

[24] Y. H. Mao. Strong ergodicity for Markov processes by coupling. J. Appl. Probab. 39 (2002) 839-852. | MR 1938175 | Zbl 1019.60077

[25] V. G. Maz'Ja. Sobolev Spaces. Springer, Berlin, 1985. (Translated from the Russian by T. O. Shaposhnikova.) | MR 817985 | Zbl 0692.46023

[26] S. P. Meyn and R. L. Tweedie. Stability of markovian processes II: continuous-time processes and sampled chains. Adv. Appl. Probab. 25 (1993) 487-517. | MR 1234294 | Zbl 0781.60052

[27] S. P. Meyn and R. L. Tweedie. Stability of markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25 (1993) 518-548. | MR 1234295 | Zbl 0781.60053

[28] C. Roberto and B. Zegarlinski. Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243 (2007) 28-66. | MR 2289793 | Zbl 1120.28013

[29] M. Röckner and F. Y. Wang. Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR 1856277 | Zbl 1009.47028

[30] A. Y. Veretennikov. On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 (1997) 115-127. | MR 1472961 | Zbl 0911.60042

[31] F. Y. Wang. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219-245. | MR 1736202 | Zbl 0946.58010

[32] F. Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2004. | MR 2040788

[33] F. Y. Wang. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206 (2004) 167-190. | MR 2024350 | Zbl 1048.58013

[34] F. Y. Wang. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005) 1-15. | MR 2127729 | Zbl 1068.47051

[35] F. Y. Wang. L1-convergence and hypercontractivity of diffusion semi-groups on manifolds. Studia Math. 162 (2004) 219-227. | MR 2047652 | Zbl 1084.58014

[36] P. A. Zitt. Annealing diffusion in a slowly growing potential. Stochastic Process. Appl. 118 (2008) 76-119. | MR 2376253 | Zbl 1144.60048