Comparison between criteria leading to the weak invariance principle
Durieu, Olivier ; Volný, Dalibor
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008), p. 324-340 / Harvested from Numdam

Le but de cet article est de comparer différents critères conduisant au théoreme limite centrale et au principe d'invariance faible. Ces critères sont la décomposition martingale-cobord développée par Gordin dans Dokl. Akad. Nauk SSSR 188 (1969), le critère projectif introduit par Dedecker dans Probab. Theory Related Fields 110 (1998), par la suite amélioré par Dedecker et Rio dans Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) et la condition introduite par Maxwell et Woodroofe dans Ann. Probab. 28 (2000), plus tard améliorée par Peligrad et Utev dans Ann. Probab. 33 (2005). On montre que dans tout système dynamique ergodique d’entropie strictement positive, si l’on considère deux de ces critères, on peut trouver une fonction dans 𝕃 2 vérifiant le premier mais pas le deuxième.

The aim of this paper is to compare various criteria leading to the central limit theorem and the weak invariance principle. These criteria are the martingale-coboundary decomposition developed by Gordin in Dokl. Akad. Nauk SSSR 188 (1969), the projective criterion introduced by Dedecker in Probab. Theory Related Fields 110 (1998), which was subsequently improved by Dedecker and Rio in Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) and the condition introduced by Maxwell and Woodroofe in Ann. Probab. 28 (2000) later improved upon by Peligrad and Utev in Ann. Probab. 33 (2005). We prove that in every ergodic dynamical system with positive entropy, if we consider two of these criteria, we can find a function in 𝕃 2 satisfying the first but not the second.

Publié le : 2008-01-01
DOI : https://doi.org/10.1214/07-AIHP123
Classification:  60F05,  60F17,  60G10,  28D05,  60G42
@article{AIHPB_2008__44_2_324_0,
     author = {Durieu, Olivier and Voln\'y, Dalibor},
     title = {Comparison between criteria leading to the weak invariance principle},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {44},
     year = {2008},
     pages = {324-340},
     doi = {10.1214/07-AIHP123},
     mrnumber = {2446326},
     zbl = {1182.60010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_324_0}
}
Durieu, Olivier; Volný, Dalibor. Comparison between criteria leading to the weak invariance principle. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 324-340. doi : 10.1214/07-AIHP123. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_324_0/

[1] P. Billingsley. The Lindeberg-Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961) 788-792. | MR 126871 | Zbl 0129.10701

[2] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. | MR 233396 | Zbl 0172.21201

[3] Y. S. Chow and H. Teicher. Probability Theory, 3rd edition. Springer, New York, 1997. | MR 1476912 | Zbl 0891.60002

[4] I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ. Ergodic Theory. Springer, New York, 1982. (Translated from the Russian by A. B. Sosinskiĭ.) | MR 832433 | Zbl 0493.28007

[5] J. Dedecker. A central limit theorem for stationary random fields. Probab. Theory Related Fields 110 (1998) 397-426. | MR 1616496 | Zbl 0902.60020

[6] J. Dedecker and E. Rio. On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. | Numdam | MR 1743095 | Zbl 0949.60049

[7] A. Del Junco and J. Rosenblatt. Counterexamples in ergodic theory and number theory. Math. Ann. 245 (1979) 185-197. | MR 553340 | Zbl 0398.28021

[8] M. I. Gordin. The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 (1969) 739-741. | MR 251785 | Zbl 0212.50005

[9] A. Gut. Probability: A Graduate Course. Springer, New York, 2005. | MR 2125120 | Zbl 1076.60001

[10] P. Hall and C. C. Heyde. Martingale Limit Theory and Its Application. Academic Press, New York, 1980. | MR 624435 | Zbl 0462.60045

[11] C. C. Heyde. On the central limit theorem and iterated logarithm law for stationary processes. Bull. Austral. Math. Soc. 12 (1975) 1-8. | MR 372954 | Zbl 0287.60035

[12] I. A. Ibragimov. A central limit theorem for a class of dependent random variables. Teor. Verojatnost. i Primenen. 8 (1963) 89-94. | MR 151997 | Zbl 0123.36103

[13] S. Le Borgne. Limit theorems for non-hyperbolic automorphisms of the torus. Israel J. Math. 109 (1999) 61-73. | MR 1679589 | Zbl 0989.37001

[14] C. Liverani. Central limit theorem for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56-75. Pitman Res. Notes Math. Ser. 362. Longman, Harlow, 1996. | MR 1460797 | Zbl 0871.58055

[15] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR 1782272 | Zbl 1044.60014

[16] F. Merlevède, M. Peligrad and S. Utev. Recent advances in invariance principles for stationary sequences. Probab. Surv. 3 (2006) 1-36 (electronic). | MR 2206313

[17] D. Ornstein. Bernoulli shifts with the same entropy are isomorphic. Advances in Math. 4 (1970) 337-352. | MR 257322 | Zbl 0197.33502

[18] M. Peligrad and S. Utev. A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 (2005) 798-815. | MR 2123210 | Zbl 1070.60025

[19] J. G. Sinaĭ. A weak isomorphism of transformations with invariant measure. Dokl. Akad. Nauk SSSR 147 (1962) 797-800. | MR 161960 | Zbl 0205.13501

[20] D. Volný. Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 (1993) 41-74. | MR 1198662 | Zbl 0765.60025

[21] D. Volný and P. Samek. On the invariance principle and the law of iterated logarithm for stationary processes. In Mathematical Physics and Stochastic Analysis (Lisbon, 1998) 424-438. World Sci. Publishing, River Edge, NJ, 2000. | MR 1893125 | Zbl 0974.60013