Small-time behavior of beta coalescents
Berestycki, Julien ; Berestycki, Nathanaël ; Schweinsberg, Jason
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008), p. 214-238 / Harvested from Numdam

L’objet de ce travail est l’étude du comportement asymptotique en temps petit des Beta-coalescents. Ces processus décrivent la limite d’échelle de la généalogie d’un certain nombre de modèles en génétique des populations. Nous donnons en particulier un théorème de convergence presque sûre pour le nombre de blocs renormalisé. Nous décrivons également le comportement asymptotique des tailles des blocs. Ces résultats permettent de calculer la dimension de Hausdorff et la dimension de packing d’un espace métrique associé à ce type de coalescents, ainsi que la longueur totale des branches de l’arbre de coalescence. Ce dernier résultat correspond à une question qui se pose en génétique des populations. Enfin, ces résultats sont en partie étendus par des arguments de couplage aux cas de Λ-coalescents pour lesquels la mesure Λ a un comportement près de 0 semblable à celui d’une distribution Beta. Les méthodes employées reposent essentiellement sur un lien entre Beta-coalescent et les processus de branchement à espace d’état continu.

For a finite measure Λ on 0,1, the Λ-coalescent is a coalescent process such that, whenever there are b clusters, each k-tuple of clusters merges into one at rate 0 1 x k-2(1-x) b-kΛ(dx). It has recently been shown that if 1<α<2, the Λ-coalescent in which Λ is the Beta (2-α,α) distribution can be used to describe the genealogy of a continuous-state branching process (CSBP) with an α-stable branching mechanism. Here we use facts about CSBPs to establish new results about the small-time asymptotics of beta coalescents. We prove an a.s. limit theorem for the number of blocks at small times, and we establish results about the sizes of the blocks. We also calculate the Hausdorff and packing dimensions of a metric space associated with the beta coalescents, and we find the sum of the lengths of the branches in the coalescent tree, both of which are determined by the behavior of coalescents at small times. We extend most of these results to other Λ-coalescents for which Λ has the same asymptotic behavior near zero as the Beta (2-α,α) distribution. This work complements recent work of Bertoin and Le Gall, who also used CSBPs to study small-time properties of Λ-coalescents.

Publié le : 2008-01-01
DOI : https://doi.org/10.1214/07-AIHP103
Classification:  60J25,  60J85,  60J75,  60K99
@article{AIHPB_2008__44_2_214_0,
     author = {Berestycki, Julien and Berestycki, Nathana\"el and Schweinsberg, Jason},
     title = {Small-time behavior of beta coalescents},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {44},
     year = {2008},
     pages = {214-238},
     doi = {10.1214/07-AIHP103},
     mrnumber = {2446321},
     zbl = {1214.60034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_2_214_0}
}
Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Small-time behavior of beta coalescents. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 214-238. doi : 10.1214/07-AIHP103. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_2_214_0/

[1] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. | MR 1673235 | Zbl 0930.60096

[2] A.-L. Basdevant. Ruelle's probability cascades seen as a fragmentation process. Markov Process. Related Fields 12 (2006) 447-474. | MR 2246260 | Zbl 1113.60075

[3] J. Berestycki, N. Berestycki and J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007) 1835-1887. | MR 2349577 | Zbl 1129.60067

[4] J. Bertoin. Lévy Processes. Cambridge University Press, Cambridge, 1996. | MR 1406564 | Zbl 0861.60003

[5] J. Bertoin. Random Coagulation and Fragmentation Processes. Cambridge University Press, Cambridge, 2006. | MR 2253162 | Zbl 1107.60002

[6] J. Bertoin and J.-F. Le Gall. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000) 249-266. | MR 1771663 | Zbl 0963.60086

[7] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003) 261-288. | MR 1990057 | Zbl 1023.92018

[8] J. Bertoin and J.-F. Le Gall. Stochastic flows associated to coalescent processes III: limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR 2247827 | Zbl 1110.60026

[9] J. Bertoin and J. Pitman. Two coalescents derived from the ranges of stable subordinators. Electron. J. Probab. 5 (2000) 1-17. | MR 1768841 | Zbl 0949.60034

[10] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, Cambridge, 1987. | MR 898871 | Zbl 0617.26001

[11] M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg and A. Wakolbinger. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005) 303-325. | MR 2120246 | Zbl 1066.60072

[12] E. Bolthausen and A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998) 247-276. | MR 1652734 | Zbl 0927.60071

[13] P. Donnelly, S. N. Evans, K. Fleischmann, T. G. Kurtz and X. Zhou. Continuum-sites stepping-stone models, coalescing exchangeable partitions, and random trees. Ann. Probab. 28 (2000) 1063-1110. | MR 1797304 | Zbl 1023.60082

[14] P. Donnelly and T. G. Kurtz. Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR 1681126 | Zbl 0956.60081

[15] R. M. Dudley. Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. | MR 982264 | Zbl 0686.60001

[16] T. Duquesne. A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003) 996-1027. | MR 1964956 | Zbl 1025.60017

[17] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (2005) 553-603. | MR 2147221 | Zbl 1070.60076

[18] R. Durrett and J. Schweinsberg. A coalescent model for the effect of advantageous mutations on the genealogy of a population. Stochastic Process. Appl. 115 (2005) 1628-1657. | MR 2165337 | Zbl 1082.92031

[19] N. El Karoui and S. Roelly. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl. 38 (1991) 239-266. | MR 1119983 | Zbl 0743.60081

[20] S. N. Evans. Kingman's coalescent as a random metric space. In Stochastic Models: A Conference in Honour of Professor Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, Eds). Canadian Mathematical Society/American Mathematical Society, 2000. | MR 1765005 | Zbl 0955.60010

[21] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Hoboken, NJ, 2003. | MR 2118797 | Zbl 1060.28005

[22] C. Goldschmidt and J. Martin. Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10 (2005) 718-745. | MR 2164028 | Zbl 1109.60060

[23] J. Kesten, P. Ney and F. Spitzer. The Galton-Watson process with mean one and finite variance. Theory Probab. Appl. 11 (1966) 513-540. | MR 207052 | Zbl 0158.35202

[24] J. F. C. Kingman. The representation of partition structures. J. London Math. Soc. 18 (1978) 374-380. | MR 509954 | Zbl 0415.92009

[25] J. F. C. Kingman. The coalescent. Stochastic Process. Appl. 13 (1982) 235-248. | MR 671034 | Zbl 0491.60076

[26] J. Lamperti. The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7 (1967) 271-288. | MR 217893 | Zbl 0154.42603

[27] J. Lamperti. Continuous state branching processes. Bull. Amer. Math. Soc. 73 (1967) 382-386. | MR 208685 | Zbl 0173.20103

[28] M. Möhle. On the number of segregating sites for populations with large family sizes. Adv. in Appl. Probab. 38 (2006) 750-767. | MR 2256876 | Zbl 1112.92046

[29] M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001) 1547-1562. | MR 1880231 | Zbl 1013.92029

[30] J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR 1742892 | Zbl 0963.60079

[31] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999) 1116-1125. | MR 1742154 | Zbl 0962.92026

[32] J. Schweinsberg. A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000) 1-11. | MR 1736720 | Zbl 0953.60072

[33] J. Schweinsberg. Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Process. Appl. 106 (2003) 107-139. | MR 1983046 | Zbl 1075.60571

[34] M. L. Silverstein. A new approach to local times. J. Math. Mech. 17 (1968) 1023-1054. | MR 226734 | Zbl 0184.41101

[35] R. Slack. A branching process with mean one and possibly infinite variance. Z. Wahrsch. Verw. Gebiete 9 (1968) 139-145. | MR 228077 | Zbl 0164.47002

[36] A. M. Yaglom. Certain limit theorems of the theory of branching processes. Dokl. Acad. Nauk SSSR 56 (1947) 795-798. | MR 22045 | Zbl 0041.45602