Invariance principles for random walks conditioned to stay positive
Caravenna, Francesco ; Chaumont, Loïc
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008), p. 170-190 / Harvested from Numdam

Soit S n une marche aléatoire dont la loi est dans le domaine d’attraction d’une loi stable 𝒴, i.e. il existe une suite de réels positifs (a n ) telle que S n /a n converge en loi vers 𝒴. Nous montrons que le processus renormalisé (S nt /a n ,t0), une fois conditionné à rester positif, converge en loi (au sens fonctionnel) vers le processus de Lévy stable de loi 𝒴 conditionné à rester positif. Sous certaines hypothèses supplémentaires, nous montrons un principe d’invariance pour cette marche aléatoire tuée lorsqu’elle quitte la demi-droite positive et conditionnée à mourir en 0.

Let S n be a random walk in the domain of attraction of a stable law 𝒴, i.e. there exists a sequence of positive real numbers (a n ) such that S n /a n converges in law to 𝒴. Our main result is that the rescaled process (S nt /a n ,t0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.

Publié le : 2008-01-01
DOI : https://doi.org/10.1214/07-AIHP119
Classification:  60G18,  60G51,  60B10
@article{AIHPB_2008__44_1_170_0,
     author = {Caravenna, Francesco and Chaumont, Lo\"\i c},
     title = {Invariance principles for random walks conditioned to stay positive},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     volume = {44},
     year = {2008},
     pages = {170-190},
     doi = {10.1214/07-AIHP119},
     mrnumber = {2451576},
     zbl = {1175.60029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPB_2008__44_1_170_0}
}
Caravenna, Francesco; Chaumont, Loïc. Invariance principles for random walks conditioned to stay positive. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) pp. 170-190. doi : 10.1214/07-AIHP119. http://gdmltest.u-ga.fr/item/AIHPB_2008__44_1_170_0/

L. Alili and R. A. Doney. Wiener-Hopf factorization revisited and some applications. Stoc. Stoc. Rep. 66 (1999) 87-102. | MR 1687803 | Zbl 0928.60067

J. Bertoin. Lévy Processes. Cambridge University Press, 1996. | MR 1406564 | Zbl 0861.60003

J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994) 2152-2167. | MR 1331218 | Zbl 0834.60079

N. H. Bingham, C. H. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, 1989. | MR 1015093 | Zbl 0667.26003

P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR 1700749 | Zbl 0944.60003

E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480-485. | MR 415702 | Zbl 0336.60024

A. Bryn-Jones and R. A. Doney. A functional central limit theorem for random walks conditional to stay non-negative. J. London Math. Soc. (2) 74 (2006) 244-258. | MR 2254563 | Zbl 1120.60047

F. Caravenna. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 (2005) 508-530. | MR 2197112 | Zbl 1080.60045

F. Caravenna, G. Giacomin and L. Zambotti. Sharp asymptotic behavior for wetting models in (1+1)-dimension. Elect. J. Probab. 11 (2006) 345-362. | MR 2217821 | Zbl 1112.60068

J.-D. Deuschel, G. Giacomin and L. Zambotti. Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 (2005) 471-500. | MR 2198199 | Zbl 1084.60060

L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39-54. | MR 1419491 | Zbl 0879.60072

L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377-403. | MR 1465814 | Zbl 0882.60074

C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres XII-XVI. Théorie du potentiel associée à une résolvante. Théorie des processus de Markov, 2nd edition, 1417. Hermann, Paris, 1987. | MR 898005 | Zbl 0624.60084

R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351-360. | MR 803677 | Zbl 0573.60063

R. A. Doney and P. E. Greenwood. On the joint distribution of ladder variables of random walks. Probab. Theory Related Fields 94 (1993) 457-472. | MR 1201554 | Zbl 0791.60058

R. A. Doney. Spitzer's condition and ladder variables in random walks. Probab. Theory Related Fields 101 (1995) 577-580. | MR 1327226 | Zbl 0818.60060

R. A. Doney. One-sided local large deviation and renewal theorem in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | MR 1440141 | Zbl 0883.60022

T. Duquesne and J. F. Le Gall. Lévy processes and spatial branching processes. Astérisque 281 (2002). | MR 1954248 | Zbl 1037.60074

S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049

W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0219.60003

A. Garsia and J. Lamperti. A discrete renewal theorem with infinite mean. Comm. Math. Helv. 37 (1963) 221-234. | MR 148121 | Zbl 0114.08803

G. Giacomin. Random Polymer Models. Imperial College Press, World Scientific, 2007. | MR 2380992 | Zbl 1125.82001

P. E. Greenwood, E. Omey and J. L. Teugels. Harmonic renewal measures and bivariate domains of attraction in fluctuation theory. Z. Wahrsch. Verw. Gebiete 61 (1982) 527-539. | MR 682578 | Zbl 0493.60072

D. L. Iglehart. Functional central limit theorems for random walks conditioned to stay positive. Ann. Probab. 2 (1974) 608-619. | MR 362499 | Zbl 0299.60053

A. Lambert. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002) 42-70. | MR 1883717 | Zbl 1020.60074

T. L. Liggett. An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18 (1968) 559-570. | MR 238373 | Zbl 0181.20502

A. V. Skorohod. Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 (1957) 138-171. | MR 94842 | Zbl 0097.13001

Y. Velenik. Localization and Delocalization of Random Interfaces. Probab. Surv. 3 (2006) 112-169. | MR 2216964