The Orlik-Solomon model for hypersurface arrangements
[Le modèle d’Orlik-Solomon pour les arrangements d’hypersurfaces]
Dupont, Clément
Annales de l'Institut Fourier, Tome 65 (2015), p. 2507-2545 / Harvested from Numdam

Nous mettons au point un modèle pour la cohomologie du complémentaire d’un arrangement d’hypersurfaces dans une variété complexe projective lisse. Cela généralise le cas des diviseurs à croisements normaux, découvert par P. Deligne dans le cadre de la théorie de Hodge mixte des variétés complexes lisses. Notre modèle est une version globale de l’algèbre d’Orlik-Solomon, qui calcule la cohomologie du complémentaire d’une union d’hyperplans dans un espace affine. L’outil principal est le complexe des formes logarithmiques le long d’un arrangement d’hypersurfaces, et sa filtration par le poids. Nous étudions aussi des liens avec les compactifications magnifiques et les espaces de configuration de points sur des courbes.

We develop a model for the cohomology of the complement of a hypersurface arrangement inside a smooth projective complex variety. This generalizes the case of normal crossing divisors, discovered by P. Deligne in the context of the mixed Hodge theory of smooth complex varieties. Our model is a global version of the Orlik-Solomon algebra, which computes the cohomology of the complement of a union of hyperplanes in an affine space. The main tool is the complex of logarithmic forms along a hypersurface arrangement, and its weight filtration. Connections with wonderful compactifications and the configuration spaces of points on curves are also studied.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2994
Classification:  14C30,  14F05,  14F25,  52C35
Mots clés: arrangements, théorie de Hodge mixte, formes logarithmiques, espaces de configuration
@article{AIF_2015__65_6_2507_0,
     author = {Dupont, Cl\'ement},
     title = {The Orlik-Solomon model for hypersurface arrangements},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {2507-2545},
     doi = {10.5802/aif.2994},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_6_2507_0}
}
Dupont, Clément. The Orlik-Solomon model for hypersurface arrangements. Annales de l'Institut Fourier, Tome 65 (2015) pp. 2507-2545. doi : 10.5802/aif.2994. http://gdmltest.u-ga.fr/item/AIF_2015__65_6_2507_0/

[1] Aluffi, Paolo Chern classes of free hypersurface arrangements, J. Singul., Tome 5 (2012), pp. 19-32 | MR 2928931 | Zbl 1292.14007

[2] ArnolʼD, V. I. The cohomology ring of the group of dyed braids, Mat. Zametki, Tome 5 (1969), pp. 227-231 | MR 242196 | Zbl 0277.55002

[3] Bibby, Christin Cohomology of abelian arrangements (2013) (http://arxiv.org/abs/1310.4866) | MR 3419290

[4] Bibby, Christin; Hilburn, Justin Quadratic-linear duality and rational homotopy theory of chordal arrangements (2014) (http://arxiv.org/abs/1409.6748)

[5] Bloch, S. Motives, the fundamental group, and graphs (2012) (preprint)

[6] Brieskorn, Egbert Sur les groupes de tresses [d’après V. I. Arnol ' d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin (1973), p. 21-44. Lecture Notes in Math., Vol. 317 | Numdam | MR 422674 | Zbl 0277.55003

[7] Catanese, Fabrizio; Hoşten, Serkan; Khetan, Amit; Sturmfels, Bernd The maximum likelihood degree, Amer. J. Math., Tome 128 (2006) no. 3, pp. 671-697 | MR 2230921 | Zbl 1123.13019

[8] De Concini, C.; Procesi, C. Wonderful models of subspace arrangements, Selecta Math. (N.S.), Tome 1 (1995) no. 3, pp. 459-494 | Article | MR 1366622 | Zbl 0842.14038

[9] Deligne, Pierre Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | Numdam | MR 498551 | Zbl 0219.14007

[10] Deligne, Pierre Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974) no. 44, pp. 5-77 | Numdam | MR 498552 | Zbl 0237.14003

[11] Dolgachev, Igor V. Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ., Tome 47 (2007) no. 1, pp. 35-64 | MR 2359100 | Zbl 1156.14015

[12] Fulton, William; Macpherson, Robert A compactification of configuration spaces, Ann. of Math. (2), Tome 139 (1994) no. 1, pp. 183-225 | Article | MR 1259368 | Zbl 0820.14037

[13] Getzler, E. Resolving mixed Hodge modules on configuration spaces, Duke Math. J., Tome 96 (1999) no. 1, pp. 175-203 | Article | MR 1663927 | Zbl 0986.14005

[14] Hu, Yi A compactification of open varieties, Trans. Amer. Math. Soc., Tome 355 (2003) no. 12, pp. 4737-4753 | Article | MR 1997581 | Zbl 1083.14004

[15] Kříž, Igor On the rational homotopy type of configuration spaces, Ann. of Math. (2), Tome 139 (1994) no. 2, pp. 227-237 | Article | MR 1274092 | Zbl 0829.55008

[16] Leray, Jean Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France, Tome 87 (1959), pp. 81-180 | Numdam | MR 125984 | Zbl 0199.41203

[17] Li, Li Wonderful compactification of an arrangement of subvarieties, Michigan Math. J., Tome 58 (2009) no. 2, pp. 535-563 | Article | MR 2595553 | Zbl 1187.14060

[18] Looijenga, Eduard Cohomology of 3 and 3 1 , Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 150 (1993), pp. 205-228 | Article | MR 1234266 | Zbl 0814.14029

[19] Morgan, John W. The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978) no. 48, pp. 137-204 | Numdam | MR 516917 | Zbl 0401.14003

[20] Orlik, Peter; Solomon, Louis Combinatorics and topology of complements of hyperplanes, Invent. Math., Tome 56 (1980) no. 2, pp. 167-189 | Article | MR 558866 | Zbl 0432.14016

[21] Orlik, Peter; Terao, Hiroaki Arrangements of hyperplanes, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 300 (1992), pp. xviii+325 | Article | MR 1217488 | Zbl 0757.55001

[22] Peters, Chris A. M.; Steenbrink, Joseph H. M. Mixed Hodge structures, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 52 (2008), pp. xiv+470 | MR 2393625 | Zbl 1138.14002

[23] Saito, Kyoji Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 27 (1980) no. 2, pp. 265-291 | MR 586450 | Zbl 0496.32007

[24] Terao, Hiroaki Forms with logarithmic pole and the filtration by the order of the pole, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo (1978), pp. 673-685 | MR 578880 | Zbl 0429.32015

[25] Totaro, Burt Configuration spaces of algebraic varieties, Topology, Tome 35 (1996) no. 4, pp. 1057-1067 | Article | MR 1404924 | Zbl 0857.57025

[26] Voisin, Claire Hodge theory and complex algebraic geometry. I, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 76 (2002), pp. x+322 (Translated from the French original by Leila Schneps) | Article | MR 1967689 | Zbl 1005.14002

[27] Yuzvinskiĭ, S. Orlik-Solomon algebras in algebra and topology, Uspekhi Mat. Nauk, Tome 56 (2001) no. 2(338), pp. 87-166 | Article | MR 1859708 | Zbl 1033.52019