Nous montrons que pour les groupes nilpotents sous-riemanniens, le cône tangent en l’identité n’est pas un invariant quasi-conforme complet. À savoir, nous montrons qu’il existe un groupe de Lie nilpotent muni d’une métrique sous-riemannienne invariante à gauche qui n’est pas localement quasi-conformément équivalent à son cône tangent en l’identité. En particulier, ces espaces ne sont pas localement bi-Lipschitziens. Le résultat repose sur l’étude des groupes de Carnot qui sont rigides dans le sens que leurs seules applications quasi-conformes sont les translations et les dilatations.
We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps are the translations and the dilations.
@article{AIF_2014__64_6_2265_0, author = {Le Donne, Enrico and Ottazzi, Alessandro and Warhurst, Ben}, title = {Ultrarigid tangents of sub-Riemannian nilpotent groups}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {2265-2282}, doi = {10.5802/aif.2912}, zbl = {06387339}, mrnumber = {3331166}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_6_2265_0} }
Le Donne, Enrico; Ottazzi, Alessandro; Warhurst, Ben. Ultrarigid tangents of sub-Riemannian nilpotent groups. Annales de l'Institut Fourier, Tome 64 (2014) pp. 2265-2282. doi : 10.5802/aif.2912. http://gdmltest.u-ga.fr/item/AIF_2014__64_6_2265_0/
[1] Conformality and -harmonicity in Carnot groups, Duke Math. J., Tome 135 (2006) no. 3, pp. 455-479 | Article | MR 2272973 | Zbl 1106.30011
[2] The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal., Tome 5 (1995) no. 2, pp. 402-433 | Article | MR 1334873 | Zbl 0910.30020
[3] Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math., Tome 80 (2000), pp. 299-317 | Article | MR 1771529 | Zbl 0971.58004
[4] On Carnot-Carathéodory metrics, J. Differential Geom., Tome 21 (1985) no. 1, pp. 35-45 http://projecteuclid.org/euclid.jdg/1214439462 | MR 806700 | Zbl 0554.53023
[5] Contact and 1-quasiconformal maps on Carnot groups, J. Lie Theory, Tome 21 (2011) no. 4, pp. 787-811 | MR 2917692 | Zbl 1254.22006
[6] Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems, Tome 3 (1983) no. 3, pp. 415-445 | Article | MR 741395 | Zbl 0509.53040
[7] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Tome 129 (1989) no. 1, pp. 1-60 | Article | MR 979599 | Zbl 0678.53042
[8] Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Tome 192 (2004) no. 2, pp. 119-185 | Article | MR 2096453 | Zbl 1064.43004
[9] On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., Tome 10 (1970), pp. 1-82 | MR 266258 | Zbl 0206.50503
[10] Obstructions to local equivalence of distributions, Mat. Zametki, Tome 29 (1981) no. 6, p. 939-947, 957 | MR 625098 | Zbl 0471.58004
[11] Contact and Pansu differentiable maps on Carnot groups, Bull. Aust. Math. Soc., Tome 77 (2008) no. 3, pp. 495-507 | Article | MR 2454980 | Zbl 1152.22008
[12] Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Math. Soc. Japan, Tokyo (Adv. Stud. Pure Math.) Tome 22 (1993), pp. 413-494 | MR 1274961 | Zbl 0812.17018