Un point à coordonnées dans un sous-corps de de degré de transcendance un sur , avec linéairement indépendants sur , peut admettre un exposant d’approximation uniforme par les éléments de qui soit strictement plus grand que la borne inférieure que garantit le principe des tiroirs de Dirichlet. Ce fait inattendu est apparu, en lien avec des travaux de Davenport et Schmidt, pour les points de la parabole . Le but de cet article est de montrer que ce phénomène s’étend à toutes les coniques réelles définies sur et que le plus grand exposant d’approximation atteint par les points de ces courbes, sujets à la condition d’indépendance linéaire mentionnée plus tôt, est toujours le même, indépendamment de la courbe, à savoir où désigne le nombre d’or.
A point with coordinates in a subfield of of transcendence degree one over , with linearly independent over , may have a uniform exponent of approximation by elements of that is strictly larger than the lower bound given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola . The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest exponent of approximation achieved by points of these curves satisfying the above condition of linear independence is always the same, independently of the curve, namely where denotes the golden ratio.
@article{AIF_2013__63_6_2331_0, author = {Roy, Damien}, title = {Rational approximation to real points on conics}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {2331-2348}, doi = {10.5802/aif.2832}, zbl = {06325436}, mrnumber = {3237450}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_6_2331_0} }
Roy, Damien. Rational approximation to real points on conics. Annales de l'Institut Fourier, Tome 63 (2013) pp. 2331-2348. doi : 10.5802/aif.2832. http://gdmltest.u-ga.fr/item/AIF_2013__63_6_2331_0/
[1] Approximation simultanée d’un nombre -adique et de son carré par des nombres algébriques, J. Number Theory (to appear)
[2] Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble), Tome 55 (2005) no. 3, pp. 773-804 http://aif.cedram.org/item?id=AIF_2005__55_3_773_0 | Article | Numdam | MR 2149403 | Zbl 1155.11333
[3] Approximation to real numbers by algebraic integers, Acta Arith., Tome 15 (1968/1969), pp. 393-416 | MR 246822 | Zbl 0186.08603
[4] Extremal subspaces and their submanifolds, Geom. Funct. Anal., Tome 13 (2003) no. 2, pp. 437-466 | Article | MR 1982150 | Zbl 1113.11044
[5] Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.), Tome 14 (2003) no. 1, pp. 45-53 | Article | MR 2015598 | Zbl 1049.11069
[6] Simultaneous approximation to a real number and to its cube, Acta Arith. (to appear)
[7] Approximation simultanée d’un nombre et de son carré, C. R. Math. Acad. Sci. Paris, Tome 336 (2003) no. 1, pp. 1-6 | Article | MR 1968892 | Zbl 1038.11042
[8] Approximation to real numbers by cubic algebraic integers. II, Ann. of Math. (2), Tome 158 (2003) no. 3, pp. 1081-1087 | Article | MR 2031862 | Zbl 1044.11061
[9] Approximation to real numbers by cubic algebraic integers. I, Proc. London Math. Soc. (3), Tome 88 (2004) no. 1, pp. 42-62 | Article | MR 2018957 | Zbl 1035.11028
[10] On two exponents of approximation related to a real number and its square, Canad. J. Math., Tome 59 (2007) no. 1, pp. 211-224 | Article | MR 2289424 | Zbl 1115.11036
[11] On simultaneous rational approximations to a real number, its square, and its cube, Acta Arith., Tome 133 (2008) no. 2, pp. 185-197 | Article | MR 2417464 | Zbl 1228.11100
[12] Diophantine approximation, Springer, Berlin, Lecture Notes in Mathematics, Tome 785 (1980), pp. x+299 | MR 568710 | Zbl 0421.10019
[13] Simultaneous approximation to real and p-adic numbers, ProQuest LLC, Ann Arbor, MI (2009), pp. 147 (Thesis (Ph.D.)–University of Ottawa (Canada)) | MR 2736753