Rational approximation to real points on conics
[Approximation rationnelle de points réels sur les coniques]
Roy, Damien
Annales de l'Institut Fourier, Tome 63 (2013), p. 2331-2348 / Harvested from Numdam

Un point (ξ 1 ,ξ 2 ) à coordonnées dans un sous-corps de de degré de transcendance un sur , avec 1,ξ 1 ,ξ 2 linéairement indépendants sur , peut admettre un exposant d’approximation uniforme par les éléments de 2 qui soit strictement plus grand que la borne inférieure 1/2 que garantit le principe des tiroirs de Dirichlet. Ce fait inattendu est apparu, en lien avec des travaux de Davenport et Schmidt, pour les points de la parabole {(ξ,ξ 2 );ξ}. Le but de cet article est de montrer que ce phénomène s’étend à toutes les coniques réelles définies sur et que le plus grand exposant d’approximation atteint par les points de ces courbes, sujets à la condition d’indépendance linéaire mentionnée plus tôt, est toujours le même, indépendamment de la courbe, à savoir 1/γ0.618γ désigne le nombre d’or.

A point (ξ 1 ,ξ 2 ) with coordinates in a subfield of of transcendence degree one over , with 1,ξ 1 ,ξ 2 linearly independent over , may have a uniform exponent of approximation by elements of 2 that is strictly larger than the lower bound 1/2 given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola {(ξ,ξ 2 );ξ}. The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest exponent of approximation achieved by points of these curves satisfying the above condition of linear independence is always the same, independently of the curve, namely 1/γ0.618 where γ denotes the golden ratio.

Publié le : 2013-01-01
DOI : https://doi.org/10.5802/aif.2832
Classification:  11J13,  14H50
Mots clés: courbes algébriques, coniques, points réels, approximation par des points rationnels, exposant d’approximation, approximation simultanée
@article{AIF_2013__63_6_2331_0,
     author = {Roy, Damien},
     title = {Rational approximation  to real points on conics},
     journal = {Annales de l'Institut Fourier},
     volume = {63},
     year = {2013},
     pages = {2331-2348},
     doi = {10.5802/aif.2832},
     zbl = {06325436},
     mrnumber = {3237450},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2013__63_6_2331_0}
}
Roy, Damien. Rational approximation  to real points on conics. Annales de l'Institut Fourier, Tome 63 (2013) pp. 2331-2348. doi : 10.5802/aif.2832. http://gdmltest.u-ga.fr/item/AIF_2013__63_6_2331_0/

[1] Bel, P. Approximation simultanée d’un nombre v-adique et de son carré par des nombres algébriques, J. Number Theory (to appear)

[2] Bugeaud, Yann; Laurent, Michel Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble), Tome 55 (2005) no. 3, pp. 773-804 http://aif.cedram.org/item?id=AIF_2005__55_3_773_0 | Article | Numdam | MR 2149403 | Zbl 1155.11333

[3] Davenport, H.; Schmidt, Wolfgang M. Approximation to real numbers by algebraic integers, Acta Arith., Tome 15 (1968/1969), pp. 393-416 | MR 246822 | Zbl 0186.08603

[4] Kleinbock, D. Extremal subspaces and their submanifolds, Geom. Funct. Anal., Tome 13 (2003) no. 2, pp. 437-466 | Article | MR 1982150 | Zbl 1113.11044

[5] Laurent, Michel Simultaneous rational approximation to the successive powers of a real number, Indag. Math. (N.S.), Tome 14 (2003) no. 1, pp. 45-53 | Article | MR 2015598 | Zbl 1049.11069

[6] Lozier, S.; Roy, D. Simultaneous approximation to a real number and to its cube, Acta Arith. (to appear)

[7] Roy, Damien Approximation simultanée d’un nombre et de son carré, C. R. Math. Acad. Sci. Paris, Tome 336 (2003) no. 1, pp. 1-6 | Article | MR 1968892 | Zbl 1038.11042

[8] Roy, Damien Approximation to real numbers by cubic algebraic integers. II, Ann. of Math. (2), Tome 158 (2003) no. 3, pp. 1081-1087 | Article | MR 2031862 | Zbl 1044.11061

[9] Roy, Damien Approximation to real numbers by cubic algebraic integers. I, Proc. London Math. Soc. (3), Tome 88 (2004) no. 1, pp. 42-62 | Article | MR 2018957 | Zbl 1035.11028

[10] Roy, Damien On two exponents of approximation related to a real number and its square, Canad. J. Math., Tome 59 (2007) no. 1, pp. 211-224 | Article | MR 2289424 | Zbl 1115.11036

[11] Roy, Damien On simultaneous rational approximations to a real number, its square, and its cube, Acta Arith., Tome 133 (2008) no. 2, pp. 185-197 | Article | MR 2417464 | Zbl 1228.11100

[12] Schmidt, Wolfgang M. Diophantine approximation, Springer, Berlin, Lecture Notes in Mathematics, Tome 785 (1980), pp. x+299 | MR 568710 | Zbl 0421.10019

[13] Zelo, Dmitrij Simultaneous approximation to real and p-adic numbers, ProQuest LLC, Ann Arbor, MI (2009), pp. 147 (Thesis (Ph.D.)–University of Ottawa (Canada)) | MR 2736753