Recovering quantum graphs from their Bloch spectrum
[Récupération des graphes quantiques à partir de leur spectre de Bloch]
Rueckriemen, Ralf
Annales de l'Institut Fourier, Tome 63 (2013), p. 1149-1176 / Harvested from Numdam

Nous définissons le spectre de Bloch d’un graphe quantique comme la fonction qui assigne à chaque élément de la cohomologie de deRham le spectre d’un opérateur de Schrödinger magnétique associé. On montre que le spectre de Bloch détermine le tore d’Albanese, la structure de bloc et la planarité du graphe. Il détermine un dual géometrique d’un graphe planaire. Cela nous permet de montrer que le spectre de Bloch identifie et détermine complètement les graphes quantiques planaires 3-connexes.

We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar 3-connected quantum graphs.

Publié le : 2013-01-01
DOI : https://doi.org/10.5802/aif.2786
Classification:  35R30,  58J50,  58J53,  78A46,  81Q10,  58C40
Mots clés: graphes quantiques, opérateurs Schrödinger, spectre, problème spectral inverse
@article{AIF_2013__63_3_1149_0,
     author = {Rueckriemen, Ralf},
     title = {Recovering quantum graphs from their Bloch spectrum},
     journal = {Annales de l'Institut Fourier},
     volume = {63},
     year = {2013},
     pages = {1149-1176},
     doi = {10.5802/aif.2786},
     zbl = {1301.35195},
     mrnumber = {3137482},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2013__63_3_1149_0}
}
Rueckriemen, Ralf. Recovering quantum graphs from their Bloch spectrum. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1149-1176. doi : 10.5802/aif.2786. http://gdmltest.u-ga.fr/item/AIF_2013__63_3_1149_0/

[1] Band, Ram; Parzanchevski, Ori; Ben-Shach, Gilad The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A, Tome 42 (2009) no. 17, pp. 175202, 42 | Article | MR 2539297 | Zbl 1176.58019

[2] Von Below, Joachim Can one hear the shape of a network?, Partial differential equations on multistructures (Luminy, 1999), Dekker, New York (Lecture Notes in Pure and Appl. Math.) Tome 219 (2001), pp. 19-36 | MR 1824563 | Zbl 0973.35143

[3] Bolte, Jens; Endres, Sebastian Trace formulae for quantum graphs, Analysis on graphs and its applications, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 77 (2008), pp. 247-259 | MR 2459873 | Zbl 1153.81493

[4] Diestel, Reinhard Graph theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics, Tome 173 (2005) | MR 2159259 | Zbl 1074.05001

[5] Eskin, Gregory; Ralston, James; Trubowitz, Eugene On isospectral periodic potentials in R n . II, Comm. Pure Appl. Math., Tome 37 (1984) no. 6, pp. 715-753 | Article | MR 762871 | Zbl 0582.35031

[6] Gaveau, Bernard; Okada, Masami Differential forms and heat diffusion on one-dimensional singular varieties, Bull. Sci. Math., Tome 115 (1991) no. 1, pp. 61-79 | MR 1086939 | Zbl 0722.58003

[7] Gordon, Carolyn S.; Guerini, Pierre; Kappeler, Thomas; Webb, David L. Inverse spectral results on even dimensional tori, Ann. Inst. Fourier (Grenoble), Tome 58 (2008) no. 7, pp. 2445-2501 | Article | Numdam | MR 2498357 | Zbl 1159.58015

[8] Guillemin, V. Inverse spectral results on two-dimensional tori, J. Amer. Math. Soc., Tome 3 (1990) no. 2, pp. 375-387 | Article | MR 1035414 | Zbl 0702.58075

[9] Gutkin, Boris; Smilansky, Uzy Can one hear the shape of a graph?, J. Phys. A, Tome 34 (2001) no. 31, pp. 6061-6068 | Article | MR 1862642 | Zbl 0981.05095

[10] Kac, Mark Can one hear the shape of a drum?, Amer. Math. Monthly, Tome 73 (1966) no. 4, part II, pp. 1-23 | Article | MR 201237 | Zbl 0139.05603

[11] Kotani, Motoko; Sunada, Toshikazu Jacobian tori associated with a finite graph and its abelian covering graphs, Adv. in Appl. Math., Tome 24 (2000) no. 2, pp. 89-110 | Article | MR 1748964 | Zbl 1017.05038

[12] Kottos, Tsampikos; Smilansky, Uzy Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics, Tome 274 (1999) no. 1, pp. 76-124 | Article | MR 1694731 | Zbl 1036.81014

[13] Kuchment, Peter Quantum graphs: an introduction and a brief survey, Analysis on graphs and its applications, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 77 (2008), pp. 291-312 | MR 2459876 | Zbl 1210.05169

[14] Mohar, Bojan; Thomassen, Carsten Graphs on surfaces, Johns Hopkins University Press, Baltimore, MD, Johns Hopkins Studies in the Mathematical Sciences (2001) | MR 1844449 | Zbl 0979.05002

[15] Post, Olaf First order approach and index theorems for discrete and metric graphs, Ann. Henri Poincaré, Tome 10 (2009) no. 5, pp. 823-866 | Article | MR 2533873 | Zbl 1206.81044

[16] Roth, Jean-Pierre Le spectre du laplacien sur un graphe, Théorie du potentiel (Orsay, 1983), Springer, Berlin (Lecture Notes in Math.) Tome 1096 (1984), pp. 521-539 | MR 890375 | Zbl 0557.58023