Étant donné un corps de nombres et un groupe fini , on note le sous-ensemble du groupe de classes localement libre formé par les classes d’anneaux d’entiers d’extensions galoisiennes modérées avec . Nous déterminons , et montrons que c’est un sous-groupe de , au moyen d’une description utilisant un idéal de Stickelberger et des propriétés de certains codes cycliques, lorsque contient une racine de l’unité d’ordre premier et , où est un groupe élémentaire abélien d’ordre et est un groupe cyclique d’ordre agissant fidèlement sur et rendant un -module irréductible. Ceci généralise et raffine des résultats de Byott, Greither et Sodaïgui pour dans Crelle, respectivement de Bruche et Sodaïgui pour dans J. Number Theory, lesquels couvrent seulement le cas et déterminent seulement l’image de sous l’extension des scalaires de à un ordre maximal dans . Le résultat principal ici généralise donc le calcul de pour le groupe alterné de degré 4 (le cas ) donné par Byott et Sodaïgui dans Compositio.
Given an algebraic number field and a finite group , we write for the subset of the locally free classgroup consisting of the classes of rings of integers in tame Galois extensions with . We determine , and show it is a subgroup of by means of a description using a Stickelberger ideal and properties of some cyclic codes, when contains a root of unity of prime order and , where is an elementary abelian group of order and is a cyclic group of order acting faithfully on and making into an irreducible -module. This extends and refines results of Byott, Greither and Sodaïgui for in Crelle, respectively of Bruche and Sodaïgui for in J. Number Theory, which cover only the case and determine only the image of under extension of scalars from to a maximal order in . The main result here thus generalizes the calculation of for the alternating group of degree 4 (the case ) given by Byott and Sodaïgui in Compositio.
@article{AIF_2013__63_1_303_0, author = {Byott, Nigel P. and Soda\"\i gui, Boucha\"\i b}, title = {Realizable Galois module classes over the group ring for non abelian extensions}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {303-371}, doi = {10.5802/aif.2762}, zbl = {06177083}, mrnumber = {3097949}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_1_303_0} }
Byott, Nigel P.; Sodaïgui, Bouchaïb. Realizable Galois module classes over the group ring for non abelian extensions. Annales de l'Institut Fourier, Tome 63 (2013) pp. 303-371. doi : 10.5802/aif.2762. http://gdmltest.u-ga.fr/item/AIF_2013__63_1_303_0/
[1] On realizable Galois module classes and Steinitz classes of nonabelian extensions, J. Number Theory, Tome 128 (2008), pp. 954-978 | Article | MR 2400053 | Zbl 1189.11051
[2] Hopf orders and a generalization of a theorem of L.R. McCulloh, J. Algebra, Tome 177 (1995), pp. 409-433 | Article | MR 1355208 | Zbl 0838.16009
[3] Tame realisable classes over Hopf orders, J. Algebra, Tome 201 (1998), pp. 284-316 | Article | MR 1608722 | Zbl 0911.16010
[4] Classes réalisables d’extensions non abéliennes, J. reine angew. Math., Tome 601 (2006), pp. 1-27 | Article | MR 2289203 | Zbl 1137.11069
[5] Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring, J. Number Theory, Tome 112 (2005), pp. 1-19 | Article | MR 2131138 | Zbl 1073.11068
[6] Realizable Galois module classes for tetrahedal extensions, Compositio Math., Tome 141 (2005), p. 573-282 | Article | MR 2135277 | Zbl 1167.11319
[7] Classes de Steinitz d’extensions quaterniennes généralisées de degré , J. London Math. Soc., Tome 76 (2007), pp. 331-344 | Article | MR 2363419 | Zbl 1130.11064
[8] Steinitz classes of tamely ramified Galois extensions of number fields, J. Number Theory, Tome 130 (2010), pp. 1129-1154 | Article | MR 2607305 | Zbl 1215.11108
[9] Methods of Representation Theory, Volume II, Wiley, New York (1994) | MR 892316 | Zbl 0616.20001
[10] Steinitz Classes of Tamely Ramified Galois Extensions of Algebraic Number Fields (unpublished doctoral thesis, University of Illinois at Urbana-Champaign, 1975)
[11] Arithmetic and Galois module structure for tame extensions, J. reine angew. Math., Tome 286/287 (1976), pp. 380-440 | MR 432595 | Zbl 0385.12004
[12] Galois module structure, A. Fröhlich (ed.) “Algebraic Number Fields (L-functions and Galois properties)”, Academic Press, London (1977), pp. 133-191 | MR 447181
[13] Galois Module Structure of Algebraic Integers, Springer, Berlin (1983) | MR 717033 | Zbl 0501.12012
[14] Algebraic Number Theory, Cambridge University Press, Cambridge (1991) | MR 1149385 | Zbl 0744.11001
[15] Realizable classes of tetrahedral extensions, J. Number Theory, Tome 98 (2003), pp. 320-328 | Article | MR 1955420 | Zbl 1028.11067
[16] Lectures on the Theory of Algebraic Numbers, Springer, New York, Graduate Texts in Math., Tome 77 (1981) | MR 638719 | Zbl 0504.12001
[17] A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, A. Fröhlich (ed.), “Algebraic Number Fields (L-functions and Galois properties)”, Academic Press (1977) | MR 457403 | Zbl 0389.12005
[18] Galois module structure of elementary abelian extensions, J. Algebra, Tome 82 (1983), pp. 102-134 | Article | MR 701039 | Zbl 0508.12008
[19] Galois module structure of abelian extensions, J. reine angew. Math., Tome 375/376 (1987), pp. 259-306 | MR 882300 | Zbl 0619.12008
[20] Maximal Orders, Academic Press, London (1975) | MR 1972204 | Zbl 1024.16008
[21] Coding and Information Theory, Springer, New York, Graduate Texts in Mathematics, Tome 134 (1992) | MR 1168212 | Zbl 0752.94001
[22] Classes réalisables d’extesnions métacycliques de degré , J. Number Theory, Tome 130 (2010), pp. 1818-1834 | Article | MR 2651157 | Zbl 1200.11085
[23] Classes réalisables par des extensions métacycliques non abéliennes et éléments de Stickelberger, J. Number Theory, Tome 65 (1997), pp. 87-95 | Article | MR 1458204 | Zbl 0873.11061
[24] “Galois Module Structure” des extensions quaternioniennes de degré 8, J. Algebra, Tome 213 (1999), pp. 549-556 | Article | MR 1673468 | Zbl 0989.11060
[25] Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8, J. Algebra, Tome 223 (2000), pp. 367-378 | Article | MR 1738267 | Zbl 0953.11036
[26] Relative Galois module structure of octahedral extensions, J. Algebra, Tome 312 (2007), pp. 590-601 | Article | MR 2333174 | Zbl 1170.11040
[27] On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math., Tome 63 (1981), pp. 41-79 | Article | MR 608528 | Zbl 0469.12003
[28] Introduction to Cyclotomic Fields, Springer, New York, Graduate Texts in Math., Tome 83 (1996) | MR 1421575 | Zbl 0966.11047