The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions
[Limite non visqueuse et stabilité des couches limites caractéristiques pour les équations de Navier-Stokes compressibles avec conditions de frottement de Navier sur le bord]
Wang, Ya-Guang ; Williams, Mark
Annales de l'Institut Fourier, Tome 62 (2012), p. 2257-2314 / Harvested from Numdam

Nous étudions des solutions avec couches limites des équations de Navier-Stokes compressibles isentropiques avec des conditions de frottement de Navier au bord, lorsque la constante de viscosité figurant dans l’équation sur la quantité de mouvement est proportionnelle à un petit paramètre ϵ. Ces conditions aux limites sont caractéristiques pour le problème non visqueux sous-jacent, le système d’ équations d’Euler compressibles.

Les conditions aux limites impliquent que la vitesse au bord est proportionnelle à la composante tangentielle des contraintes. La composante normale de la vitesse est nulle au bord. Nous construisons tout d’abord une solution approchée à un ordre élevé de la solution, décrivant la présence d’une couche limite. La contribution principale de la couche limite apparait dans la composante tangentielle de la vitesse, est de taille ϵ et d’amplitude O(ϵ). Nous prouvons ensuite que cette solution approchée est effectivement asymptotique à la solution exacte, sur un intervalle de temps indépendant de ϵ. Un corollaire immédiat est que la solution des équations de Navier-Stokes converge dans L , lorsque la viscosité tend vers 0, vers la solution du système d’Euler compressible avec composante normale de la vitesse nulle au bord.

We study boundary layer solutions of the isentropic, compressible Navier-Stokes equations with Navier-friction boundary conditions when the viscosity constants appearing in the momentum equation are proportional to a small parameter ϵ. These boundary conditions are characteristic for the underlying inviscid problem, the compressible Euler equations.

The boundary condition implies that the velocity on the boundary is proportional to the tangential component of the stress. The normal component of velocity is zero on the boundary. We first construct a high-order approximate solution that exhibits a boundary layer. The main contribution to the layer appears in the tangential velocity and is of width ϵ and amplitude O(ϵ). Next we prove that the approximate solution stays close to the exact Navier-Stokes solution on a fixed time interval independent of ϵ. As an immediate corollary we show that the Navier-Stokes solution converges in L in the small viscosity limit to the solution of the compressible Euler equations with normal velocity equal to zero on the boundary.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2749
Classification:  76N20,  76N17
Mots clés: couches limites caractéristiques, équations de Navier-Stokes compressibles, conditions de frottement de Navier au bord, limite non visqueuse
@article{AIF_2012__62_6_2257_0,
     author = {Wang, Ya-Guang and Williams, Mark},
     title = {The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {2257-2314},
     doi = {10.5802/aif.2749},
     zbl = {pre06159912},
     mrnumber = {3060758},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2257_0}
}
Wang, Ya-Guang; Williams, Mark. The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2257-2314. doi : 10.5802/aif.2749. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2257_0/

[1] Clopeau, T.; Mikelić, R. A.And Robert On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions., Nonlinearity, Tome 11 (1998), pp. 1625-1636 | MR 1660366 | Zbl 0911.76014

[2] Feirisl, E. Dynamics of Viscous Compressible Fluids., Oxford University Press, Oxford Mathematical Monographs (2004) | MR 2040667 | Zbl 1080.76001

[3] Gérard-Varet, D.; Dormy, E. On the ill-posedness of the Prandtl equation., Journal A.M.S., Tome 23 (2010), pp. 591-609 | MR 2601044 | Zbl 1197.35204

[4] Grenier, E. On the nonlinear instability of Euler and Prandtl equations., Comm. Pure Appl. Math., Tome 53 (2000), pp. 1067-1091 | MR 1761409 | Zbl 1048.35081

[5] Guès, O. Problème mixte hyperbolique quasi-linéaire caractéristique., Comm. PDE, Tome 15 (1990), pp. 595-645 | MR 1070840 | Zbl 0712.35061

[6] Guès, O.; Métivier, G.; Williams, M.; Zumbrun, K. Navier-Stokes regularization of multidimensional Euler shocks., Ann. Sci. École Norm. Sup., Tome 39 (2006), pp. 75-175 | MR 2224659 | Zbl 1173.35082

[7] Guès, O.; Métivier, G.; Williams, M.; Zumbrun, K. Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations., Arch. Rat. Mech. Analy., Tome 197 (2010), pp. 1-87 | MR 2646814 | Zbl 1217.35136

[8] Hoff, D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data., J. Diff. Eqns., Tome 120 (1995), pp. 215-254 | MR 1339675 | Zbl 0836.35120

[9] Hoff, D. Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., Tome 7 (2005), pp. 315-338 | MR 2166979 | Zbl 1095.35025

[10] Iftimie, D.; Sueur, F. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Rat. Mech. Analy., Tome 199 (2011) no. 1, pp. 145-175 | MR 2754340 | Zbl 1229.35184

[11] Kelliher, J. Navier-stokes equations with Navier boundary conditions for a bounded domain in the plane., SIAM J. Math. Anal., Tome 38 (2006), pp. 201-232 | MR 2217315 | Zbl 1302.35295 | Zbl pre05029418

[12] Lopes Filho, M. C.; Mazzucato, A. L.; Nussenzveig Lopes, H. J.; Taylor, M. Vanishing viscosity limits and boundary layers for circularly symmetric 2d flows., Bull. Braz. Math. Soc., Tome 39 (2008), p. 471-453 | MR 2465261 | Zbl 1178.35288

[13] Lopes Filho, M. C.; Nussenzveig Lopes, H. J.; Planas, G. On the inviscid limit for two-dimensional incompressible flow with Navier friction condition., SIAM J. Math. Anal., Tome 36 (2005), pp. 1130-1141 | MR 2139203 | Zbl 1084.35060

[14] Matsumura, A.; Nishida, T. The initial value problem for the equations of motion of viscous and heat-conductive gases., J. Math. Kyoto Univ., Tome 20 (1980), pp. 67-104 | MR 564670 | Zbl 0429.76040

[15] Métivier, G. Uber Flüssigkeitsbewegungen bei sehr kleiner Reibung., Verh. Int. Math. Kongr., Heidelberg 1904, Teubner (1905), pp. 484-494 | JFM 36.0800.02

[16] Navier, C. L. M. H. Sur les lois de l’équilibrie et du mouvement des corps élastiques., Mem. Acad. R. Sci. Inst. France, Tome 6 (1827), pp. 369

[17] Oleinik, O. A.; Samokhin, V. N. Mathematical Models in Boundary Layers Theory, Chapman & Hall/CRC (1999) | MR 1697762 | Zbl 0928.76002

[18] Qian, T.; Wang, X. P.; Sheng, P. Molecular scale contact line hydrodynamics of immiscible flows., Physical Review E, Tome 68 (2003), pp. 1-15 | MR 1980479

[19] Sammartino, M.; Caflisch, R. E. Zero viscosity limit or analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations., Comm. Math. Phys., Tome 192 (1998), pp. 433-461 | MR 1617542 | Zbl 0913.35102

[20] Temam, R.; Wang, X. Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case., J. Diff. Eq., Tome 179 (2002), pp. 647-686 | MR 1885683 | Zbl 0997.35042

[21] Wang, X. P.; Wang, Y. G.; Xin, Z. P. Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit, Comm. Math. Sci., Tome 8 (2010), pp. 965-998 | MR 2744916 | Zbl 05843222 | Zbl pre05843222

[22] Xin, Z.P.; Yanagisawa, T. Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane., Comm. Pure Appl. Math., Tome 52 (1999), pp. 479-541 | MR 1659070 | Zbl 0922.35116