On donne une preuve simple d’un résultat dû à Dimca et Suciu : un groupe de Kähler qui est aussi le groupe fondamental d’une variété trois-dimensionelle est fini. On montre également qu’un groupe qui est le groupe fondamental d’une variété trois-dimensionelle et en même temps le groupe fondamental d’une surface complexe compacte non-kählerienne est soit soit .
We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or .
@article{AIF_2012__62_3_1081_0, author = {Kotschick, D.}, title = {Three-manifolds and K\"ahler groups}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1081-1090}, doi = {10.5802/aif.2717}, zbl = {1275.32018}, mrnumber = {3013817}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1081_0} }
Kotschick, D. Three-manifolds and Kähler groups. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1081-1090. doi : 10.5802/aif.2717. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1081_0/
[1] On the Malcev completion of Kähler groups, Comment. Math. Helv., Tome 71 (1996), pp. 192-212 | Article | MR 1396672 | Zbl 0867.57002
[2] Fundamental Groups of Compact Kähler Manifolds, Amer. Math. Soc., Providence, R.I., Mathematical Surveys and Monographs, Tome 44 (1996) | MR 1379330 | Zbl 0849.32006
[3] Compact Complex Surfaces, Springer-Verlag, Berlin, Mathematical Surveys and Monographs (1984) | MR 749574 | Zbl 0718.14023
[4] On compact Kähler surfaces, Ann. Inst. Fourier, Tome 49 (1999), pp. 287-302 | Article | Numdam | MR 1688136 | Zbl 0926.32025
[5] Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S., Tome 69 (1989), pp. 173-201 | Numdam | MR 1019964 | Zbl 0695.58010
[6] Which -manifold groups are Kähler groups?, J. Eur. Math. Soc., Tome 11 (2009), pp. 521-528 | Article | MR 2505439 | Zbl 1217.57011
[7] Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math., Tome 308 (1989), pp. 67-70 | MR 983460 | Zbl 0661.53049
[8] Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry, Providence, RI, Rochester, N.Y., 1982, Amer. Math. Soc. (Contemp. Math.) Tome 44 (1985), pp. 149-155 | MR 813110 | Zbl 0597.57006
[9] Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press (1987) | MR 895623 | Zbl 0772.57002
[10] Non-positively curved -manifolds with non-Kähler , C. R. Acad. Sci. Paris Sér. I, Tome 332 (2001), pp. 249-252 | Article | MR 1817371
[11] On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc., Tome 19 (1987), pp. 463-466 | Article | MR 898726 | Zbl 0608.53061
[12] Problems in Low-Dimensional Topology, Geometric Topology, American Mathematical Society and International Press (AMS/IP Studies in Advanced Mathematics) Tome 2 part 2 (1997) | MR 1470751 | Zbl 0882.00042
[13] Notes on Perelman’s papers, Geom. Topol., Tome 12 (2008), pp. 2587-2855 | Article | MR 2460872
[14] Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR] (17 May 2010)
[15] Finite covers of -manifolds containing essential surfaces of Euler characteristic , Proc. Amer. Math. Soc., Tome 101 (1987), pp. 743-747 | MR 911044 | Zbl 0644.57002
[16] Shafarevich maps and automorphic forms, Princeton Univ. Press, Princeton, NJ, Mathematical Surveys and Monographs (1995) | MR 1341589 | Zbl 0871.14015
[17] Finite covers of -manifolds containing essential tori, Trans. Amer. Math. Soc., Tome 310 (1988), pp. 381-391 | MR 965759 | Zbl 0706.57009
[18] A unique decomposition theorem for -manifolds, Amer. J. Math., Tome 84 (1962), pp. 1-7 | Article | MR 142125 | Zbl 0108.36501
[19] Ricci flow and the Poincaré conjecture, Amer. Math. Soc. and Clay Math. Institute (2007) | MR 2334563
[20] Towards classification of non-Kählerian complex surfaces, Sugaku Exp., Tome 2 (1989), pp. 209-229 | MR 780359 | Zbl 0685.14020
[21] Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG] (10 Mar 2003)
[22] The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG] (11 Nov 2002)
[23] The geometries of -manifolds, Bull. London Math. Soc., Tome 15 (1983), pp. 401-487 | Article | MR 705527 | Zbl 0561.57001
[24] The existence of anti-self-dual conformal structures, J. Differential Geometry, Tome 36 (1992), pp. 163-253 | MR 1168984 | Zbl 0822.53006
[25] Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc., Tome 22 (1990), pp. 339-343 | Article | MR 1058308 | Zbl 0711.57024