Three-manifolds and Kähler groups
[Variétés trois-dimensionelles et groupes de Kähler]
Kotschick, D.
Annales de l'Institut Fourier, Tome 62 (2012), p. 1081-1090 / Harvested from Numdam

On donne une preuve simple d’un résultat dû à Dimca et Suciu : un groupe de Kähler qui est aussi le groupe fondamental d’une variété trois-dimensionelle est fini. On montre également qu’un groupe qui est le groupe fondamental d’une variété trois-dimensionelle et en même temps le groupe fondamental d’une surface complexe compacte non-kählerienne est soit soit 2 .

We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2717
Classification:  32Q15,  57M05,  14F35,  32J15,  57M50
Mots clés: groupes fondamentaux des variétés trois-dimensionelles, groupes de Kähler
@article{AIF_2012__62_3_1081_0,
     author = {Kotschick, D.},
     title = {Three-manifolds and K\"ahler groups},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {1081-1090},
     doi = {10.5802/aif.2717},
     zbl = {1275.32018},
     mrnumber = {3013817},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1081_0}
}
Kotschick, D. Three-manifolds and Kähler groups. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1081-1090. doi : 10.5802/aif.2717. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1081_0/

[1] Amorós, J. On the Malcev completion of Kähler groups, Comment. Math. Helv., Tome 71 (1996), pp. 192-212 | Article | MR 1396672 | Zbl 0867.57002

[2] Amorós, J.; Burger, M.; Corlette, K.; Kotschick, D.; Toledo, D. Fundamental Groups of Compact Kähler Manifolds, Amer. Math. Soc., Providence, R.I., Mathematical Surveys and Monographs, Tome 44 (1996) | MR 1379330 | Zbl 0849.32006

[3] Barth, W.; Peters, C.; Van De Ven, A. Compact Complex Surfaces, Springer-Verlag, Berlin, Mathematical Surveys and Monographs (1984) | MR 749574 | Zbl 0718.14023

[4] Buchdahl, N. On compact Kähler surfaces, Ann. Inst. Fourier, Tome 49 (1999), pp. 287-302 | Article | Numdam | MR 1688136 | Zbl 0926.32025

[5] Carlson, J. A.; Toledo, D. Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S., Tome 69 (1989), pp. 173-201 | Numdam | MR 1019964 | Zbl 0695.58010

[6] Dimca, A.; Suciu, A. I. Which 3-manifold groups are Kähler groups?, J. Eur. Math. Soc., Tome 11 (2009), pp. 521-528 | Article | MR 2505439 | Zbl 1217.57011

[7] Gromov, M. Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math., Tome 308 (1989), pp. 67-70 | MR 983460 | Zbl 0661.53049

[8] Hempel, J. Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry, Providence, RI, Rochester, N.Y., 1982, Amer. Math. Soc. (Contemp. Math.) Tome 44 (1985), pp. 149-155 | MR 813110 | Zbl 0597.57006

[9] Hempel, J. Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press (1987) | MR 895623 | Zbl 0772.57002

[10] Hernández-Lamoneda, L. Non-positively curved 3-manifolds with non-Kähler π 1 , C. R. Acad. Sci. Paris Sér. I, Tome 332 (2001), pp. 249-252 | Article | MR 1817371

[11] Johnson, F. E. A.; Rees, E. G. On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc., Tome 19 (1987), pp. 463-466 | Article | MR 898726 | Zbl 0608.53061

[12] Kirby, R.; W. H. Kazez Problems in Low-Dimensional Topology, Geometric Topology, American Mathematical Society and International Press (AMS/IP Studies in Advanced Mathematics) Tome 2 part 2 (1997) | MR 1470751 | Zbl 0882.00042

[13] Kleiner, B.; Lott, J. Notes on Perelman’s papers, Geom. Topol., Tome 12 (2008), pp. 2587-2855 | Article | MR 2460872

[14] Klingler, B. Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR] (17 May 2010)

[15] Kojima, S. Finite covers of 3-manifolds containing essential surfaces of Euler characteristic =0, Proc. Amer. Math. Soc., Tome 101 (1987), pp. 743-747 | MR 911044 | Zbl 0644.57002

[16] Kollár, J. Shafarevich maps and automorphic forms, Princeton Univ. Press, Princeton, NJ, Mathematical Surveys and Monographs (1995) | MR 1341589 | Zbl 0871.14015

[17] Luecke, L. Finite covers of 3-manifolds containing essential tori, Trans. Amer. Math. Soc., Tome 310 (1988), pp. 381-391 | MR 965759 | Zbl 0706.57009

[18] Milnor, J. W. A unique decomposition theorem for 3-manifolds, Amer. J. Math., Tome 84 (1962), pp. 1-7 | Article | MR 142125 | Zbl 0108.36501

[19] Morgan, J. W.; Tian, G. Ricci flow and the Poincaré conjecture, Amer. Math. Soc. and Clay Math. Institute (2007) | MR 2334563

[20] Nakamura, I. Towards classification of non-Kählerian complex surfaces, Sugaku Exp., Tome 2 (1989), pp. 209-229 | MR 780359 | Zbl 0685.14020

[21] Perelman, G. Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG] (10 Mar 2003)

[22] Perelman, G. The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG] (11 Nov 2002)

[23] Scott, P. The geometries of 3-manifolds, Bull. London Math. Soc., Tome 15 (1983), pp. 401-487 | Article | MR 705527 | Zbl 0561.57001

[24] Taubes, C. H. The existence of anti-self-dual conformal structures, J. Differential Geometry, Tome 36 (1992), pp. 163-253 | MR 1168984 | Zbl 0822.53006

[25] Toledo, D. Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc., Tome 22 (1990), pp. 339-343 | Article | MR 1058308 | Zbl 0711.57024