Etant donné un objet amas-basculant quelconque dans une catégorie triangulée 2-Calabi–Yau sur un corps algébriquement clos (comme dans le cadre de Keller et Reiten), il est possible de définir, pour chaque objet , une fraction rationnelle , en utilisant une formule proposée par Caldero et Keller. On montre, de plus, que l’application associant à est un caractère amassé ; c’est-à-dire qu’elle vérifie une certaine formule de multiplication. Cela permet de prouver qu’elle induit, dans les cas fini et acyclique, une bijection entre objets rigides indécomposables de la catégorie amassée et variables d’amas de l’algèbre amassée correspondante, confirmant ainsi une conjecture de Caldero et Keller.
Starting from an arbitrary cluster-tilting object in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object , a fraction using a formula proposed by Caldero and Keller. We show that the map taking to is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.
@article{AIF_2008__58_6_2221_0, author = {Palu, Yann}, title = {Cluster characters for 2-Calabi--Yau triangulated categories}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {2221-2248}, doi = {10.5802/aif.2412}, zbl = {1154.16008}, mrnumber = {2473635}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_2221_0} }
Palu, Yann. Cluster characters for 2-Calabi–Yau triangulated categories. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2221-2248. doi : 10.5802/aif.2412. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_2221_0/
[1] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Tome 126 (2005) no. 1, pp. 1-52 | Article | MR 2110627 | Zbl 1135.16013
[2] Appendix to Clusters and seeds in acyclic cluster algebras (preprint arXiv: math.RT/0510359) | Zbl pre05175036
[3] Cluster structures for 2-Calabi–Yau categories and unipotent groups (preprint arXiv: math.RT/0701557)
[4] Tilting theory and cluster combinatorics, Adv. Math., Tome 204 (2006) no. 2, pp. 572-618 | Article | MR 2249625 | Zbl 1127.16011
[5] Cluster mutation via quiver representations (preprint arXiv: math.RT/0412077) | Zbl pre05274281
[6] Cluster-tilted algebras, Trans. Amer. Math. Soc., Tome 359 (2007) no. 1, p. 323-332 (electronic) | Article | MR 2247893 | Zbl 1123.16009
[7] Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc., Tome 358 (2006) no. 3, p. 1347-1364 (electronic) | Article | MR 2187656 | Zbl 1137.16020
[8] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Tome 81 (2006) no. 3, pp. 595-616 | Article | MR 2250855 | Zbl 1119.16013
[9] From triangulated categories to cluster algebras (preprint arXiv: math.RT/0506018) | Zbl 1141.18012
[10] From triangulated categories to cluster algebras II (preprint arXiv: math.RT/0510251)
[11] Cluster algebras IV: Coefficients (preprint arXiv: math.RA/0602259) | Zbl 1127.16023
[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Tome 15 (2002) no. 2, p. 497-529 (electronic) | Article | MR 1887642 | Zbl 1021.16017
[13] Cluster algebras. II. Finite type classification, Invent. Math., Tome 154 (2003) no. 1, pp. 63-121 | Article | MR 2004457 | Zbl 1054.17024
[14] Partial flag varieties and preprojective algebras (preprint arXiv: math.RT/0609138) | Zbl pre05298323
[15] Semicanonical bases and preprojective algebras II: A multiplication formula (preprint arXiv: math.RT/0509483) | Zbl 1132.17004
[16] Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 2, pp. 193-253 | Numdam | MR 2144987 | Zbl 1131.17006
[17] Rigid modules over preprojective algebras, Invent. Math., Tome 165 (2006) no. 3, pp. 589-632 | Article | MR 2242628 | Zbl pre05057631
[18] Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras (preprint arXiv: math.RT/0605136)
[19] Mutations in triangulated categories and rigid Cohen–Macaulay modules (preprint arXiv: math.RT/0607736) | Zbl 1140.18007
[20] On triangulated orbit categories, Doc. Math., Tome 10 (2005), p. 551-581 (electronic) | MR 2184464 | Zbl 1086.18006
[21] The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver , Doc. Math., Tome 7 (2002), p. 535-560 (electronic) | Zbl 1021.18002
[22] Acyclic Calabi-Yau categories (preprint arXiv: math.RT/0610594)
[23] Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math., Tome 211 (2007) no. 1, pp. 123-151 | Article | MR 2313531 | Zbl 1128.18007
[24] From triangulated categories to abelian categories–cluster tilting in a general framework (preprint arXiv: math.RT/0605100) | Zbl 1133.18005
[25] Semicanonical bases arising from enveloping algebras, Adv. Math., Tome 151 (2000) no. 2, pp. 129-139 | Article | MR 1758244 | Zbl 0983.17009
[26] Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., Tome 355 (2003) no. 10, p. 4171-4186 (electronic) | Article | MR 1990581 | Zbl 1042.52007
[27] On the structure of Calabi–Yau categories with a cluster tilting subcategory (preprint arXiv: math.RT/0607394) | Zbl 1122.18007