Nous démontrons un analogue du théorème de Grothendieck-Riemann-Roch en géométrie d’Arakelov.
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
@article{AIF_2008__58_6_2169_0, author = {Gillet, Henri and R\"ossler, Damian and Soul\'e, Christophe}, title = {An arithmetic Riemann-Roch theorem in higher degrees}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {2169-2189}, doi = {10.5802/aif.2410}, zbl = {1152.14023}, mrnumber = {2473633}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_2169_0} }
Gillet, Henri; Rössler, Damian; Soulé, Christophe. An arithmetic Riemann-Roch theorem in higher degrees. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2169-2189. doi : 10.5802/aif.2410. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_2169_0/
[1] An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat., Tome 38 (1974), pp. 1179-1192 | MR 472815 | Zbl 0355.14002
[2] Heat kernels and Dirac operators, Springer-Verlag, Berlin, Grundlehren Text Editions (2004) (Corrected reprint of the 1992 original) | MR 2273508 | Zbl 1037.58015
[3] Théorie des intersections et théorème de Riemann-Roch, Springer-Verlag, Berlin (1971) (Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225) | MR 354655 | Zbl 0218.14001
[4] Bott-Chern currents and complex immersions, Duke Math. J., Tome 60 (1990) no. 1, pp. 255-284 | Article | MR 1047123 | Zbl 0697.58005
[5] Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) no. 244, pp. viii+275 | MR 1623496 | Zbl 0899.32013
[6] Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys., Tome 115 (1988) no. 1, pp. 49-78 | Article | Zbl 0651.32017
[7] Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys., Tome 115 (1988) no. 1, pp. 79-126 | Article | MR 929147 | Zbl 0651.32017
[8] Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Tome 115 (1988) no. 2, pp. 301-351 | Article | MR 931666 | Zbl 0651.32017
[9] Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 86 (1990), pp. 249-331 | MR 1086887 | Zbl 0744.14015
[10] Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Tome 1 (1992) no. 4, pp. 647-684 | MR 1174905 | Zbl 0784.32023
[11] Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998) no. 8, pp. 427-435 | Article | MR 1628231 | Zbl 1048.14500
[12] Calculus on arithmetic surfaces, Ann. of Math. (2), Tome 119 (1984) no. 2, pp. 387-424 | Article | MR 740897 | Zbl 0559.14005
[13] Lectures on the arithmetic Riemann-Roch theorem, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 127 (1992) (Notes taken by Shouwu Zhang) | MR 1158661 | Zbl 0744.14016
[14] Intersection theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 2 (1984) | MR 732620 | Zbl 0541.14005
[15] Analytic torsion and the arithmetic Todd genus, Topology, Tome 30 (1991) no. 1, pp. 21-54 (With an appendix by D. Zagier) | Article | MR 1081932 | Zbl 0787.14005
[16] Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990) no. 72, p. 93-174 (1991) | Numdam | MR 1087394 | Zbl 0741.14012
[17] Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2), Tome 131 (1990) no. 1, pp. 163-203 | Article | MR 1038362 | Zbl 0715.14018
[18] Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2), Tome 131 (1990) no. 2, pp. 205-238 | Article | MR 1043268 | Zbl 0715.14006
[19] An arithmetic Riemann-Roch theorem, Invent. Math., Tome 110 (1992) no. 3, pp. 473-543 | Article | MR 1189489 | Zbl 0777.14008
[20] Moving lemma for -chains, J. Reine Angew. Math., Tome 548 (2002), pp. 1-19 | Article | MR 1915208 | Zbl 1016.14002
[21] Introduction to Arakelov theory, Springer-Verlag, New York (1988) | MR 969124 | Zbl 0667.14001
[22] Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France, Tome 85 (1957), pp. 239-262 | Numdam | MR 95967 | Zbl 0079.30901
[23] An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J., Tome 96 (1999) no. 1, pp. 61-126 | Article | MR 1663919 | Zbl 0961.14006
[24] Lectures on Arakelov geometry, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 33 (1992) (With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer) | MR 1208731 | Zbl 0812.14015
[25] A General Arithmetic Riemann-Roch Theorem, Chicago University (1998) (Ph. D. Thesis)