On the cohomology of vector fields on parallelizable manifolds
[Sur la cohomologie des champs vectoriels sur les variétés parallélisables]
Billig, Yuly ; Neeb, Karl-Hermann
Annales de l'Institut Fourier, Tome 58 (2008), p. 1937-1982 / Harvested from Numdam

Dans le présent article, nous déterminons, pour chaque variété parallélisable compacte lisse M, les espaces de seconde cohomologie de l’algèbre de Lie 𝒱 M des champs vectoriels lisses sur M à valeurs dans le module Ω ¯ M p =Ω M p /dΩ M p-1 . Le cas p=1 est d’un intérêt particulier puisque l’algèbre de jauge des fonctions sur M à valeurs dans une algèbre de Lie simple de dimension finie possède l’extension centrale universelle avec le centre Ω ¯ M 1 , généralisant les algèbres de Kac-Moody affines. L’espace H 2 (𝒱 M ,Ω ¯ M 1 ) classifie des torsions du produit semi-direct de 𝒱 M avec l’extension centrale universelle d’une algèbre de Lie de jauge.

In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra 𝒱 M of smooth vector fields on M with values in the module Ω ¯ M p =Ω M p /dΩ M p-1 . The case of p=1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center Ω ¯ M 1 , generalizing affine Kac-Moody algebras. The second cohomology H 2 (𝒱 M ,Ω ¯ M 1 ) classifies twists of the semidirect product of 𝒱 M with the universal central extension of a gauge Lie algebra.

Publié le : 2008-01-01
DOI : https://doi.org/10.5802/aif.2402
Classification:  17B56,  17B65,  17B68
Mots clés: algèbre de Lie des champs vectoriels, cohomologie de l’algèbre de Lie, cohomologie de Gelfand-Fuks, algèbre de Lie affine étendu
@article{AIF_2008__58_6_1937_0,
     author = {Billig, Yuly and Neeb, Karl-Hermann},
     title = {On the cohomology of vector fields on parallelizable manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {58},
     year = {2008},
     pages = {1937-1982},
     doi = {10.5802/aif.2402},
     zbl = {1157.17007},
     mrnumber = {2473625},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_1937_0}
}
Billig, Yuly; Neeb, Karl-Hermann. On the cohomology of vector fields on parallelizable manifolds. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1937-1982. doi : 10.5802/aif.2402. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_1937_0/

[1] Abraham, R.; Marsden, J. E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, Addison-Wesley (1983) | MR 697563 | Zbl 0508.58001

[2] Allison, B.; Berman, S.; Faulkner, J.; Pianzola, A. Realizations of graded-simple algebras as loop algebras (math.RA/0511723) | Zbl pre05309524

[3] Bahturin, Y. A.; Mikhalev, A. A.; Petrogradsky, V. M.; Zaicev, M. V. Infinite-dimensional Lie superalgebras, Walter de Gruyter & Co (1992) | MR 1192546 | Zbl 0762.17001

[4] Beggs, E. J. The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford, Tome 38 (1987) no. 2, pp. 131-154 | Article | MR 891612 | Zbl 0636.58004

[5] Benkart, G.; Neher, E. The centroid of extended affine and root graded Lie algebras, J. Pure Appl. Algebra, Tome 205 (2006) no. 1, pp. 117-145 | Article | MR 2193194 | Zbl pre05004396

[6] Berman, S.; Billig, Y. Irreducible representations for toroidal Lie algebras, J. Algebra, Tome 221 (1999), pp. 188-231 | Article | MR 1722910 | Zbl 0942.17016

[7] Bernshtein, I. N.; Rozenfel’D, B. I. Homogeneous spaces of infinitedimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surveys, Tome 28 (1973) no. 4, pp. 107-142 | Article | Zbl 0289.57011

[8] Billig, Y. A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not. (2006) (Art. ID 68395, 46 pp.) | MR 2272091 | Zbl pre05136974

[9] Chevalley, C.; Eilenberg, S. Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc., Tome 63 (1948), pp. 85-124 | Article | MR 24908 | Zbl 0031.24803

[10] Cohen, F. R.; Taylor, L. R.; Springer Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I, Proc. Conf. Evanston, Ill (Lectures Notes Math.) Tome 657 (1978), pp. 106-173 | MR 513543 | Zbl 0398.55004

[11] De Wilde, M.; Lecomte, P. B. A. Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures et Appl., Tome 62 (1983), pp. 197-214 | MR 713396 | Zbl 0481.58032

[12] Eswara Rao, S.; Moody, R. V. Vertex representations for n-toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. Math. Phys., Tome 159 (1994), pp. 239-264 | Article | MR 1256988 | Zbl 0808.17018

[13] Feigin, B. L.; Fuchs, D. B.; Onishchik, A. L.; Vinberg, E. B. Cohomologies of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras II, Springer-Verlag (Encyclop. Math. Sci.) Tome 21 (2001) | Zbl 0931.17014

[14] Flato, M.; Lichnerowicz, A. Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l’algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications, C. R. Acad. Sci. Paris, Sér. A-B, Tome 291 (1980) no. 4, p. A331-A335 | Zbl 0462.58011

[15] Fuks, D. B. Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London (1986) | MR 874337 | Zbl 0667.17005

[16] Gelfand, I. M.; Fuks, D. B. Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR (1970) no. 34, pp. 322-337 | MR 266195 | Zbl 0216.20302

[17] Gelfand, I. M.; Fuks, D. B. Cohomology of the Lie algebra of vector fields with nontrivial coefficients, Func. Anal. and its Appl., Tome 4 (1970), pp. 181-192 | Article | MR 287589 | Zbl 0222.58001

[18] Godbillon, C. Cohomologies d’algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/1973), Exp. No. 421 (Lecture Notes in Math.) Tome 383 (1974), pp. 69-87 | Numdam | Zbl 0296.17010

[19] Haefliger, A. Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup., 4e série, Tome 9 (1976), pp. 503-532 | Numdam | Zbl 0342.57014

[20] Hochschild, G.; Serre, J.-P. Cohomology of Lie algebras, Annals of Math., Tome 57 (1953) no. 3, pp. 591-603 | Article | MR 54581 | Zbl 0053.01402

[21] Kassel, C. Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure Applied Algebra, Tome 34 (1984), pp. 265-275 | Article | MR 772062 | Zbl 0549.17009

[22] Koszul, J.-L. Homologie des complexes de formes différentielles d’ordre supérieur, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I, Ann. Sci. École Norm. Sup. (4), Tome 7 (1974), pp. 139-153 | Numdam | Zbl 0316.58003

[23] Larsson, T. A. Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys., Tome 201 (1999), pp. 461-470 | Article | MR 1682285 | Zbl 0936.17025

[24] Maier, P.; Strasburger Et Al., A. Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Banach Center Publications, Warszawa, Tome 55 (2002), pp. 61-76 | MR 1911980 | Zbl 1045.17008

[25] Neeb, K.-H. Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques, Tome 15 (2004), pp. 69-194 | MR 2143422 | Zbl 1079.22018

[26] Neeb, K.-H. Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys., Tome 5 (2006), pp. 48-74 | MR 2269881 | Zbl 1105.53064

[27] Neeb, K.-H. Non-abelian extensions of topological Lie algebras, Communications in Algebra, Tome 34 (2006), pp. 991-1041 | Article | MR 2208114 | Zbl pre05018918

[28] Neher, E. Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can., Tome 26 (2004) no. 3, pp. 90-96 | MR 2083842 | Zbl 1072.17012

[29] Pressley, A.; Segal, G. Loop Groups, Oxford University Press, Oxford (1986) | MR 900587 | Zbl 0618.22011

[30] Rosenfeld, B. I. Cohomology of certain infinite-dimensional Lie algebras, Funct. Anal. Appl., Tome 13 (1971), pp. 340-342 | Zbl 0248.57030

[31] Tsujishita, T. On the continuous cohomology of the Lie algebra of vector fields, Proc. Jap. Math. Soc., Tome 53:A (1977), pp. 134-138 | MR 458517 | Zbl 0476.58032

[32] Tsujishita, T. Continuous cohomology of the Lie algebra of vector fields, Memoirs of the Amer. Math. Soc., Tome 253 (1981) no. 34, pp. 154p. | MR 634471 | Zbl 0482.58036