Convergence in Capacity
[Convergence en capacité]
Xing, Yang
Annales de l'Institut Fourier, Tome 58 (2008), p. 1839-1861 / Harvested from Numdam

Nous étudions la relation entre la convergence en capacité des fonctions pluri sous-harmoniques et la convergence des mesures de Monge-Ampère complexes correspondantes. Nous trouvons un type de convergence des mesures de Monge-Ampère complexe qui est essentiellement équivalent à la convergence en capacité C n des fonctions. Nous montrons aussi que la convergence faible des mesures de Monge-Ampère complexes est équivalente à la convergence en capacité C n-1 des fonctions dans certains cas. Comme application nous donnons des théorèmes de stabilité des solutions des équations de Monge-Ampère.

We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity C n of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity C n-1 of functions in some case. As applications we give certain stability theorems of solutions of Monge-Ampère equations.

Publié le : 2008-01-01
DOI : https://doi.org/10.5802/aif.2400
Classification:  32W20,  32U15
@article{AIF_2008__58_5_1839_0,
     author = {Xing, Yang},
     title = {Convergence in Capacity},
     journal = {Annales de l'Institut Fourier},
     volume = {58},
     year = {2008},
     pages = {1839-1861},
     doi = {10.5802/aif.2400},
     zbl = {1152.32021},
     mrnumber = {2445835},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2008__58_5_1839_0}
}
Xing, Yang. Convergence in Capacity. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1839-1861. doi : 10.5802/aif.2400. http://gdmltest.u-ga.fr/item/AIF_2008__58_5_1839_0/

[1] Åhag, P. The complex Monge-Ampère operator on bounded hyperconvex domains (2002) (Doctoral thesis, Mid Sweden University, Sundsvall)

[2] Bedford, E.; Taylor, B. A. The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math., Tome 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007

[3] Bedford, E.; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012

[4] Bedford, E.; Taylor, B. A. Fine topology, Šilov boundary and (dd c ) n , J. Funct. Anal., Tome 72 (1987), pp. 225-251 | Article | MR 886812 | Zbl 0677.31005

[5] Cegrell, U. Discontinuité de l’opérateur de Monge-Ampère complexe, C. R. Acad. Sci. Paris Ser. I Math., Tome 296 (1983), pp. 869-871 | Zbl 0541.31008

[6] Cegrell, U. Capacities in complex analysis (1988) (Braunschweig/Wiesbaden:Friedr. Vieweg and Sohn) | MR 964469 | Zbl 0655.32001

[7] Cegrell, U. Pluricomplex energy, Acta Math., Tome 180 (1998) no. 2, pp. 187-217 | Article | MR 1638768 | Zbl 0926.32042

[8] Cegrell, U. Convergence in capacity, Isaac Newton Institute for Math. Science P. (2001) (reprint Series NI01046-NPD, also available at arxiv.org: math. CV/0505218)

[9] Cegrell, U. The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, Tome 54 (2004), pp. 159-179 | Article | Numdam | MR 2069125 | Zbl 1065.32020

[10] Cegrell, U.; Kolodziej, S. The equation of complex Monge-Ampère type and stability of solutions, Math. Ann., Tome 334 (2006), pp. 713-729 | Article | MR 2209253 | Zbl 1103.32019

[11] Kiselman, C. O. Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000 (Birkhäuser, Basel, 2000, 655-714) | MR 1796855 | Zbl 0962.31001

[12] Kolodziej, S. The range of the complex Monge-Ampère operator, II, Indiana Univ. Math. J., Tome 44 (1995), pp. 765-782 | Article | MR 1375348 | Zbl 0849.31009

[13] Kolodziej, S. The complex Monge-Ampère equation and pluripotential theory, Memoirs of the Amer. Math. Soc., Tome 178 (2005) no. 840, pp. 64p. | MR 2172891 | Zbl 1084.32027

[14] Lelong, P. Discontinuité et annulation de l’opérateur de Monge-Ampère complexe, Lecture Notes in Math., Tome 1028 (1983), pp. 219-224 (Springer-Verlag, Berlin) | Article | Zbl 0592.32014

[15] Rashkovskii, A. Singularities of plurisubharmonic functions and positive closed currents, Mid Sweden University, Research Reports (2000) (No 20)

[16] Xing, Y. Weak Convergence of Currents (To appear in Math. Z.) | Zbl 1165.32016

[17] Xing, Y. Continuity of the complex Monge-Ampère operator, Proc. of Amer. Math. Soc., Tome 124 (1996), pp. 457-467 | Article | MR 1322940 | Zbl 0849.31010

[18] Xing, Y. Complex Monge-Ampère measures of plurisubharmonic functions with bounded values near the boundary, Canad. J. Math., Tome 52 (2000) no. 5, pp. 1085-1100 | Article | MR 1782339 | Zbl 0976.32019