Nous étudions la relation entre la convergence en capacité des fonctions pluri sous-harmoniques et la convergence des mesures de Monge-Ampère complexes correspondantes. Nous trouvons un type de convergence des mesures de Monge-Ampère complexe qui est essentiellement équivalent à la convergence en capacité des fonctions. Nous montrons aussi que la convergence faible des mesures de Monge-Ampère complexes est équivalente à la convergence en capacité des fonctions dans certains cas. Comme application nous donnons des théorèmes de stabilité des solutions des équations de Monge-Ampère.
We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity of functions in some case. As applications we give certain stability theorems of solutions of Monge-Ampère equations.
@article{AIF_2008__58_5_1839_0, author = {Xing, Yang}, title = {Convergence in Capacity}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {1839-1861}, doi = {10.5802/aif.2400}, zbl = {1152.32021}, mrnumber = {2445835}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_5_1839_0} }
Xing, Yang. Convergence in Capacity. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1839-1861. doi : 10.5802/aif.2400. http://gdmltest.u-ga.fr/item/AIF_2008__58_5_1839_0/
[1] The complex Monge-Ampère operator on bounded hyperconvex domains (2002) (Doctoral thesis, Mid Sweden University, Sundsvall)
[2] The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math., Tome 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007
[3] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012
[4] Fine topology, Šilov boundary and , J. Funct. Anal., Tome 72 (1987), pp. 225-251 | Article | MR 886812 | Zbl 0677.31005
[5] Discontinuité de l’opérateur de Monge-Ampère complexe, C. R. Acad. Sci. Paris Ser. I Math., Tome 296 (1983), pp. 869-871 | Zbl 0541.31008
[6] Capacities in complex analysis (1988) (Braunschweig/Wiesbaden:Friedr. Vieweg and Sohn) | MR 964469 | Zbl 0655.32001
[7] Pluricomplex energy, Acta Math., Tome 180 (1998) no. 2, pp. 187-217 | Article | MR 1638768 | Zbl 0926.32042
[8] Convergence in capacity, Isaac Newton Institute for Math. Science P. (2001) (reprint Series NI01046-NPD, also available at arxiv.org: math. CV/0505218)
[9] The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, Tome 54 (2004), pp. 159-179 | Article | Numdam | MR 2069125 | Zbl 1065.32020
[10] The equation of complex Monge-Ampère type and stability of solutions, Math. Ann., Tome 334 (2006), pp. 713-729 | Article | MR 2209253 | Zbl 1103.32019
[11] Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000 (Birkhäuser, Basel, 2000, 655-714) | MR 1796855 | Zbl 0962.31001
[12] The range of the complex Monge-Ampère operator, II, Indiana Univ. Math. J., Tome 44 (1995), pp. 765-782 | Article | MR 1375348 | Zbl 0849.31009
[13] The complex Monge-Ampère equation and pluripotential theory, Memoirs of the Amer. Math. Soc., Tome 178 (2005) no. 840, pp. 64p. | MR 2172891 | Zbl 1084.32027
[14] Discontinuité et annulation de l’opérateur de Monge-Ampère complexe, Lecture Notes in Math., Tome 1028 (1983), pp. 219-224 (Springer-Verlag, Berlin) | Article | Zbl 0592.32014
[15] Singularities of plurisubharmonic functions and positive closed currents, Mid Sweden University, Research Reports (2000) (No 20)
[16] Weak Convergence of Currents (To appear in Math. Z.) | Zbl 1165.32016
[17] Continuity of the complex Monge-Ampère operator, Proc. of Amer. Math. Soc., Tome 124 (1996), pp. 457-467 | Article | MR 1322940 | Zbl 0849.31010
[18] Complex Monge-Ampère measures of plurisubharmonic functions with bounded values near the boundary, Canad. J. Math., Tome 52 (2000) no. 5, pp. 1085-1100 | Article | MR 1782339 | Zbl 0976.32019