Convergence of Bergman geodesics on CP 1
[Convergence des géodésiques de Bergman sur CP 1 ]
Song, Jian ; Zelditch, Steve
Annales de l'Institut Fourier, Tome 57 (2007), p. 2209-2237 / Harvested from Numdam

L’espace des métriques de Kähler dans une classe donnée sur une variété projective kählérienne X est un espace symétrique de dimension infinie dont les géodésiques ω t sont des solutions d’une équation Monge-Ampère complexe homogène sur A×X, ou A={z:e -1 <|z|<1} . Phong-Sturm ont prouvé que les géodésiques Monge-Ampère des potentiels kählériens ϕ(t,z) de ω t peuvent être approximées dans un sens faible C 0 par géodésiques ϕ N (t,z) de l’espace symétrique de métriques de Bergman de hauteur N. Le but de cet article est de prouver que ϕ N (t,z)ϕ(t,z) dans C 2 ([0,1]×X) dans le cas des métriques toriques sur X=CP 1 .

The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X is an infinite dimensional symmetric space whose geodesics ω t are solutions of a homogeneous complex Monge-Ampère equation in A×X, where A is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials ϕ(t,z) of ω t may be approximated in a weak C 0 sense by geodesics ϕ N (t,z) of the finite dimensional symmetric space of Bergman metrics of height N. In this article we prove that ϕ N (t,z)ϕ(t,z) in C 2 ([0,1]×X) in the case of toric Kähler metrics on X=CP 1 .

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2332
Classification:  53C55
Mots clés: métrique de Bergman, équation Monge-Ampère, noyau de Bergman-Szegö, métrique torique, potential kählérien, potential symplectique
@article{AIF_2007__57_7_2209_0,
     author = {Song, Jian and Zelditch, Steve},
     title = {Convergence of Bergman geodesics on $\mathbf{CP}^1$},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {2209-2237},
     doi = {10.5802/aif.2332},
     zbl = {1144.53089},
     mrnumber = {2394541},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2209_0}
}
Song, Jian; Zelditch, Steve. Convergence of Bergman geodesics on $\mathbf{CP}^1$. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2209-2237. doi : 10.5802/aif.2332. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2209_0/

[1] Abreu, Miguel Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), Amer. Math. Soc., Providence, RI (Fields Inst. Commun.) Tome 35 (2003), pp. 1-24 | MR 1969265 | Zbl 1044.53051

[2] Arezzo, Claudio; Tian, Gang Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Tome 2 (2003) no. 4, pp. 617-630 | Numdam | MR 2040638

[3] Berndtsson, B. Positivity of direct image bundles and convexity on the space of Kähler metrics (preprint, arxiv: math.CV/0608385)

[4] Biskup, M.; Borgs, C.; Chayes, J. T.; Kleinwaks, L. J.; Kotecký, R. Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys., Tome 251 (2004) no. 1, pp. 79-131 | Article | MR 2096735 | Zbl 1088.82010

[5] Calabi, Eugenio Extremal Kähler metrics, Seminar on Differential Geometry, Princeton Univ. Press, Princeton, N.J. (Ann. of Math. Stud.) Tome 102 (1982), pp. 259-290 | MR 645743 | Zbl 0487.53057

[6] Chen, X.; Tian, G. Geometry of Kähler metrics and foliations by discs (preprint, math.DG/0409433)

[7] Chen, Xiuxiong The space of Kähler metrics, J. Differential Geom., Tome 56 (2000) no. 2, pp. 189-234 | MR 1863016 | Zbl 1041.58003

[8] Donaldson, S. K. Some numerical results in complex differential geometry (preprint, math.DG/0512625)

[9] Donaldson, S. K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc., Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 196 (1999), pp. 13-33 | MR 1736211 | Zbl 0972.53025

[10] Donaldson, S. K. Scalar curvature and projective embeddings. I, J. Differential Geom., Tome 59 (2001) no. 3, pp. 479-522 | MR 1916953 | Zbl 1052.32017

[11] Donaldson, S. K. Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Tome 1 (2002) no. 2, pp. 171-196 | MR 1959581 | Zbl 1035.53102

[12] Donaldson, S. K. Scalar curvature and stability of toric varieties, J. Differential Geom., Tome 62 (2002) no. 2, pp. 289-349 | MR 1988506 | Zbl 1074.53059

[13] Ellis, Richard S. Entropy, large deviations, and statistical mechanics, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 271 (1985) | MR 793553 | Zbl 0566.60097

[14] Fulton, William Introduction to toric varieties, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 131 (1993) (, The William H. Roever Lectures in Geometry) | MR 1234037 | Zbl 0813.14039

[15] Guan, Daniel On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett., Tome 6 (1999) no. 5-6, pp. 547-555 | MR 1739213 | Zbl 0968.53050

[16] Guillemin, Victor Kähler structures on toric varieties, J. Differential Geom., Tome 40 (1994) no. 2, pp. 285-309 | MR 1293656 | Zbl 0813.53042

[17] Hörmander, Lars The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Springer Study Edition (1990) (Distribution theory and Fourier analysis) | MR 1065136 | Zbl 1028.35001

[18] Mabuchi, Toshiki Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Tome 24 (1987) no. 2, pp. 227-252 | MR 909015 | Zbl 0645.53038

[19] Phong, D. H.; Sturm, Jacob The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., Tome 166 (2006) no. 1, pp. 125-149 | Article | MR 2242635 | Zbl 05064660

[20] Semmes, Stephen Complex Monge-Ampère and symplectic manifolds, Amer. J. Math., Tome 114 (1992) no. 3, pp. 495-550 | Article | MR 1165352 | Zbl 0790.32017

[21] Semmes, Stephen The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, The Gelfand Mathematical Seminars, 1993–1995, Birkhäuser Boston, Boston, MA (Gelfand Math. Sem.) (1996), pp. 225-242 | MR 1398924 | Zbl 0860.35031

[22] Shiffman, Bernard; Tate, Tatsuya; Zelditch, Steve Harmonic analysis on toric varieties, Explorations in complex and Riemannian geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 332 (2003), pp. 267-286 | MR 2018345 | Zbl 1041.32004

[23] Shiffman, Bernard; Tate, Tatsuya; Zelditch, Steve Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 5, pp. 1497-1546 | Article | Numdam | MR 2127856 | Zbl 1081.35063

[24] Song, Jian The α-invariant on toric Fano manifolds, Amer. J. Math., Tome 127 (2005) no. 6, pp. 1247-1259 | Article | MR 2183524 | Zbl 1088.32012

[25] Song, Jian; Zelditch, S. Bergman metrics and geodesics in the space of Kähler metrics on toric varieties (preprint, arXiv: 0707.3082)

[26] Tian, Gang On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Tome 32 (1990) no. 1, pp. 99-130 | MR 1064867 | Zbl 0706.53036

[27] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059

[28] Yau, Shing-Tung Open problems in geometry, Chern—a great geometer of the twentieth century, Int. Press, Hong Kong (1992), pp. 275-319 | MR 1201338

[29] Zelditch, Steve Bernstein polynomials, Bergman kernels and toric Kähler varieties (preprint, arXiv: 0705.2879)

[30] Zelditch, Steve Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998) no. 6, pp. 317-331 | Article | MR 1616718 | Zbl 0922.58082