L’espace des métriques de Kähler dans une classe donnée sur une variété projective kählérienne est un espace symétrique de dimension infinie dont les géodésiques sont des solutions d’une équation Monge-Ampère complexe homogène sur , ou . Phong-Sturm ont prouvé que les géodésiques Monge-Ampère des potentiels kählériens de peuvent être approximées dans un sens faible par géodésiques de l’espace symétrique de métriques de Bergman de hauteur . Le but de cet article est de prouver que dans dans le cas des métriques toriques sur .
The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold is an infinite dimensional symmetric space whose geodesics are solutions of a homogeneous complex Monge-Ampère equation in , where is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials of may be approximated in a weak sense by geodesics of the finite dimensional symmetric space of Bergman metrics of height . In this article we prove that in in the case of toric Kähler metrics on .
@article{AIF_2007__57_7_2209_0, author = {Song, Jian and Zelditch, Steve}, title = {Convergence of Bergman geodesics on $\mathbf{CP}^1$}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {2209-2237}, doi = {10.5802/aif.2332}, zbl = {1144.53089}, mrnumber = {2394541}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2209_0} }
Song, Jian; Zelditch, Steve. Convergence of Bergman geodesics on $\mathbf{CP}^1$. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2209-2237. doi : 10.5802/aif.2332. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2209_0/
[1] Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), Amer. Math. Soc., Providence, RI (Fields Inst. Commun.) Tome 35 (2003), pp. 1-24 | MR 1969265 | Zbl 1044.53051
[2] Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Tome 2 (2003) no. 4, pp. 617-630 | Numdam | MR 2040638
[3] Positivity of direct image bundles and convexity on the space of Kähler metrics (preprint, arxiv: math.CV/0608385)
[4] Partition function zeros at first-order phase transitions: a general analysis, Comm. Math. Phys., Tome 251 (2004) no. 1, pp. 79-131 | Article | MR 2096735 | Zbl 1088.82010
[5] Extremal Kähler metrics, Seminar on Differential Geometry, Princeton Univ. Press, Princeton, N.J. (Ann. of Math. Stud.) Tome 102 (1982), pp. 259-290 | MR 645743 | Zbl 0487.53057
[6] Geometry of Kähler metrics and foliations by discs (preprint, math.DG/0409433)
[7] The space of Kähler metrics, J. Differential Geom., Tome 56 (2000) no. 2, pp. 189-234 | MR 1863016 | Zbl 1041.58003
[8] Some numerical results in complex differential geometry (preprint, math.DG/0512625)
[9] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc., Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 196 (1999), pp. 13-33 | MR 1736211 | Zbl 0972.53025
[10] Scalar curvature and projective embeddings. I, J. Differential Geom., Tome 59 (2001) no. 3, pp. 479-522 | MR 1916953 | Zbl 1052.32017
[11] Holomorphic discs and the complex Monge-Ampère equation, J. Symplectic Geom., Tome 1 (2002) no. 2, pp. 171-196 | MR 1959581 | Zbl 1035.53102
[12] Scalar curvature and stability of toric varieties, J. Differential Geom., Tome 62 (2002) no. 2, pp. 289-349 | MR 1988506 | Zbl 1074.53059
[13] Entropy, large deviations, and statistical mechanics, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 271 (1985) | MR 793553 | Zbl 0566.60097
[14] Introduction to toric varieties, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 131 (1993) (, The William H. Roever Lectures in Geometry) | MR 1234037 | Zbl 0813.14039
[15] On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett., Tome 6 (1999) no. 5-6, pp. 547-555 | MR 1739213 | Zbl 0968.53050
[16] Kähler structures on toric varieties, J. Differential Geom., Tome 40 (1994) no. 2, pp. 285-309 | MR 1293656 | Zbl 0813.53042
[17] The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Springer Study Edition (1990) (Distribution theory and Fourier analysis) | MR 1065136 | Zbl 1028.35001
[18] Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Tome 24 (1987) no. 2, pp. 227-252 | MR 909015 | Zbl 0645.53038
[19] The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., Tome 166 (2006) no. 1, pp. 125-149 | Article | MR 2242635 | Zbl 05064660
[20] Complex Monge-Ampère and symplectic manifolds, Amer. J. Math., Tome 114 (1992) no. 3, pp. 495-550 | Article | MR 1165352 | Zbl 0790.32017
[21] The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces, The Gelfand Mathematical Seminars, 1993–1995, Birkhäuser Boston, Boston, MA (Gelfand Math. Sem.) (1996), pp. 225-242 | MR 1398924 | Zbl 0860.35031
[22] Harmonic analysis on toric varieties, Explorations in complex and Riemannian geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 332 (2003), pp. 267-286 | MR 2018345 | Zbl 1041.32004
[23] Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 5, pp. 1497-1546 | Article | Numdam | MR 2127856 | Zbl 1081.35063
[24] The -invariant on toric Fano manifolds, Amer. J. Math., Tome 127 (2005) no. 6, pp. 1247-1259 | Article | MR 2183524 | Zbl 1088.32012
[25] Bergman metrics and geodesics in the space of Kähler metrics on toric varieties (preprint, arXiv: 0707.3082)
[26] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Tome 32 (1990) no. 1, pp. 99-130 | MR 1064867 | Zbl 0706.53036
[27] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059
[28] Open problems in geometry, Chern—a great geometer of the twentieth century, Int. Press, Hong Kong (1992), pp. 275-319 | MR 1201338
[29] Bernstein polynomials, Bergman kernels and toric Kähler varieties (preprint, arXiv: 0705.2879)
[30] Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998) no. 6, pp. 317-331 | Article | MR 1616718 | Zbl 0922.58082