Soit un morphisme séparé d’espaces adiques de type fini sur un corps non archimédien avec affinoïde et de dimension . Soit un sous-ensemble constructible localement fermé dans et soit le morphisme d’espaces pseudo-adiques induit de . Soit un anneau noethérien de torsion première à la caractéristique résiduelle de et soit un faisceau de -modules localement constant de type fini sur . Il y a une classe naturelle des faisceaux de -modules sur engendrée par des faisceaux de -modules constructibles et des faisceaux de -modules Zariski-constructibles. Nous montrons que le faisceau image directe à support propre est génériquement constructible, et si est localement algébrique, est un élément de . En conséquence, on obtient un théorème de comparaison entre cohomologie -adique d’un schéma séparé de type fini sur et de l’espace adique associé.
Let be a separated morphism of adic spaces of finite type over a non-archimedean field with affinoid and of dimension , let be a locally closed constructible subset of and let be the morphism of pseudo-adic spaces induced by . Let be a noetherian torsion ring with torsion prime to the characteristic of the residue field of the valuation ring of and let be a constant -module of finite type on . There is a natural class of -modules on generated by the constructible -modules and the Zariski-constructible -modules. We show that, for every , the higher direct image sheaf with proper support is generically constructible, and if is locally algebraic, is an element of . As an application we obtain a comparison isomorphism for the -adic cohomology of a separated scheme of finite type over and its associated adic space.
@article{AIF_2007__57_3_973_0, author = {Huber, Roland}, title = {A finiteness result for the compactly supported cohomology of rigid analytic varieties, II}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {973-1017}, doi = {10.5802/aif.2283}, zbl = {1146.14015}, mrnumber = {2336836}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_3_973_0} }
Huber, Roland. A finiteness result for the compactly supported cohomology of rigid analytic varieties, II. Annales de l'Institut Fourier, Tome 57 (2007) pp. 973-1017. doi : 10.5802/aif.2283. http://gdmltest.u-ga.fr/item/AIF_2007__57_3_973_0/
[1] Etale cohomology for p-adic analytic spaces (1994) (handwritten notes of a talk at Toulouse)
[2] Commutative Algebra, Hermann, Paris (1972) | MR 360549
[3] Cohomologie étale, Springer, Berlin Heidelberg New York, Lecture Notes Math., Tome 569 (1977) | MR 463174
[4] Etale cohomology and the Weil Conjecture, Springer, Berlin Heidelberg New York (1988) | MR 926276 | Zbl 0643.14012
[5] Éléments de Géométrie Algébrique, Publ. Math., Tome 11 (1961), pp. 167 | Numdam
[6] Revêtements Étales et Groupe Fondamental, Springer, Berlin Heidelberg New York, Lecture Notes Math., Tome 224 (1971) | MR 354651
[7] Continuous valuations, Math. Z., Tome 212 (1993), pp. 445-477 | Article | MR 1207303 | Zbl 0788.13010
[8] A generalization of formal schemes and rigid analytic varieties, Math. Z., Tome 217 (1994), pp. 513-551 | Article | MR 1306024 | Zbl 0814.14024
[9] Etale Cohomology of Rigid Analytic Varieties and Adic Spaces, Vieweg, Braunschweig Wiesbaden (1996) | MR 1734903 | Zbl 0868.14010
[10] A comparison theorem for -adic cohomology, Compos. Math., Tome 112 (1998), pp. 217-235 | Article | MR 1626021 | Zbl 0930.14010
[11] A finiteness result for the compactly supported cohomology of rigid analytic varieties, J. Alg. Geom., Tome 7 (1998), pp. 313-357 | MR 1620114 | Zbl 1040.14008
[12] On valuation spectra, Contemporary Mathematics, Tome 115 (1994), pp. 167-206 | MR 1260707 | Zbl 0799.13002
[13] Bewertungsspektrum und rigide Geometrie, Universität Regensburg Fachbereich Mathematik, Regensburger Mathematische Schriften [Regensburg Mathematical Publications], Tome 23 (1993) | MR 1255978 | Zbl 0806.13001
[14] Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. math., Tome 2 (1967), pp. 191-214 | Article | MR 210948 | Zbl 0202.20101
[15] Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) (1974) no. Heft 7, pp. iv+72 | MR 422671
[16] Riemann’s existence problem for a p-adic field, Invent. math., Tome 111 (1993), pp. 309-330 | Article | MR 1198812 | Zbl 0780.32005
[17] The structure of proper p-adic groups, J. reine angew. Math., Tome 408 (1995), pp. 167-219 | Article | MR 1361790 | Zbl 0869.14009
[18] Local monodromy in non-archimedean analytic geometry, Publ. Math., Tome 102 (2006), pp. 167-280 | Article | Numdam | MR 2217053 | Zbl 05017591
[19] Critères de platitude et de projectivité, Invent. math., Tome 13 (1971), pp. 1-89 | Article | MR 308104 | Zbl 0227.14010
[20] Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Tome 6 (1956), pp. 1-42 | Article | Numdam | MR 82175 | Zbl 0075.30401
[21] Deformation spaces of one-dimensional formal modules and their cohomology (2006) (preprint)