On the Fundamental Group of self-affine plane Tiles
[Groupe fondamental de motifs auto-affines]
Luo, Jun ; Thuswaldner, Jörg M.
Annales de l'Institut Fourier, Tome 56 (2006), p. 2493-2524 / Harvested from Numdam

Soient A 2 × 2 une matrice expansive, 𝒟 2 un ensemble à |det(A)| éléments et 𝒯 l’ensemble défini par l’équation A𝒯=𝒯+𝒟. Si 𝒯 a une mesure de Lebesgue sur 2 strictement supérieure à zéro, alors 𝒯 est appelé motif plan auto-affine. Cet article établit certaines propriétés topologiques de 𝒯. Nous montrons que le groupe fondamental π 1 (𝒯) de 𝒯 est soit trivial, soit infini non dénombrable, et nous donnons des critères associés à chacun des deux cas. De plus, nous incluons une courte preuve de la propriété que l’adhérence de chaque composante connexe de int (𝒯) est un continuum localement connexe (nous démontrons même ce résultat dans le cas plus général d’attracteurs plans d’IFS satisfaisant la condition de l’ensemble ouvert). Si π 1 (𝒯)=0, nous montrons même que l’adhérence de chaque composante de int(𝒯) est homéomorphe au disque unité.

Nous appliquons nos résultats à plusieurs examples de motifs étudiés dans la littérature.

Let A 2 × 2 be an expanding matrix, 𝒟 2 a set with |det(A)| elements and define 𝒯 via the set equation A𝒯=𝒯+𝒟. If the two-dimensional Lebesgue measure of 𝒯 is positive we call 𝒯 a self-affine plane tile. In the present paper we are concerned with topological properties of 𝒯. We show that the fundamental group π 1 (𝒯) of 𝒯 is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of π 1 (𝒯). Furthermore, we give a short proof of the fact that the closure of each component of int (𝒯) is a locally connected continuum (we prove this result even in the more general case of plane IFS attractors fulfilling the open set condition). If π 1 (𝒯)=0 we even show that the closure of each component of int (𝒯) is homeomorphic to a closed disk.

We apply our results to several examples of tiles which are studied in the literature.

Publié le : 2006-01-01
DOI : https://doi.org/10.5802/aif.2247
Classification:  52C20,  14F35,  11A63,  05B45
Mots clés: Motif, pavage, groupe fondamental, Systme de numŽration
@article{AIF_2006__56_7_2493_0,
     author = {Luo, Jun and Thuswaldner, J\"org M.},
     title = {On the Fundamental Group of self-affine plane Tiles},
     journal = {Annales de l'Institut Fourier},
     volume = {56},
     year = {2006},
     pages = {2493-2524},
     doi = {10.5802/aif.2247},
     zbl = {1119.52012},
     mrnumber = {2290788},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2006__56_7_2493_0}
}
Luo, Jun; Thuswaldner, Jörg M. On the Fundamental Group of self-affine plane Tiles. Annales de l'Institut Fourier, Tome 56 (2006) pp. 2493-2524. doi : 10.5802/aif.2247. http://gdmltest.u-ga.fr/item/AIF_2006__56_7_2493_0/

[1] Ahlfors, L. V. Complex Analysis, McGraw-Hill Book Comp (1966) | MR 510197 | Zbl 0154.31904

[2] Akiyama, S.; M. Thuswaldner, J. A survey on topological properties of tiles related to number systems, Geom. Dedicata, Tome 109 (2004), pp. 89-105 | Article | MR 2113188 | Zbl 1073.37017

[3] Akiyama, S.; M. Thuswaldner, J. Topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl., Tome 49 (2005), pp. 1439-1485 | Article | MR 2149493 | Zbl 02201728

[4] Bandt, C.; Wang, Y. Disk-like self-affine tiles in 2 , Discrete Comput. Geom., Tome 26 (2001), pp. 591-601 | MR 1863811 | Zbl 1020.52018

[5] Conner, G. R.; W. Lamoreaux, J. On the existence of universal covering spaces for metric spaces and subsets of the euclidean plane (preprint) | MR 2214874 | Zbl 1092.57001

[6] Croft, H. T.; J. Falconer, K.; K. Guy, R. Unsolved problems in geometry. Problem Books in Mathematics, Springer-Verlag, New York, Unsolved Problems in Intuitive Mathematics, II (1994) (Corrected reprint of the 1991 original) | MR 1316393 | Zbl 0748.52001

[7] Eilenberg, S. Languages and Machines, Academic Press, New York Tome A (1974)

[8] Falconer, K. Fractal Geometry, John Wiley and Sons (1990) | MR 1102677 | Zbl 0689.28003

[9] Gröchenig, K.; Haas, A. Self-similar lattice tilings, J. Fourier Anal. Appl., Tome 1 (1994), pp. 131-170 | Article | MR 1348740 | Zbl 0978.28500

[10] Hata, M. On the structure of self-similar sets, Japan J. Appl. Math., Tome 2 (1985), pp. 381-414 | Article | MR 839336 | Zbl 0608.28003

[11] Hatcher, A. Algebraic Topology, Cambridge University Press, Cambridge (2002) | MR 1867354 | Zbl 1044.55001

[12] Hutchinson, J. E. Fractals and self-similarity, Indiana Univ. Math. J., Tome 30 (1981), pp. 713-747 | Article | MR 625600 | Zbl 0598.28011

[13] Kátai, I. Number Systems and Fractal Geometry, Janus Pannonius University Pecs (1995) | Zbl 1029.11005

[14] Kovács, A. On the computation of attractors for invertible expanding linear operators in k , Publ. Math. Debrecen, Tome 56 (2000), pp. 97-120 | MR 1740496 | Zbl 0999.11009

[15] Kuratowski, K. Topology, Academic Press, New York and London Tome I (1966) | MR 217751 | Zbl 0158.40802

[16] Kuratowski, K. Topology, Academic Press, New York and London Tome II (1968) | Zbl 0158.40802

[17] Luo, J.; Akiyama, S.; M. Thuswaldner, J. On the boundary connectedness of connected tiles, Math. Proc. Cambridge Philos. Soc., Tome 137 (2004), pp. 397-410 | Article | MR 2092067 | Zbl 1070.37010

[18] Luo, J.; Rao, H.; Tan, B. Topological structure of self-similar sets, Fractals, Tome 2 (2002), pp. 223-227 | Article | MR 1910665 | Zbl 1075.28005

[19] Moise, E. E. Geometric Topology in Dimensions 2 and 3 , Springer-Verlag, New York-Heidelberg, Graduate Texts in Mathematics, Tome 47 (1977) | MR 488059 | Zbl 0349.57001

[20] Ngai, S.-M.; Tang, T.-M. Vertices of self-similar tiles (Illinois J. Math, to appear) | MR 2210263

[21] Ngai, S.-M.; Tang, T.-M. A technique in the topology of connected self-similar tiles, Fractals, Tome 12 (2004), pp. 389-403 | Article | MR 2109984

[22] Ngai, S.-M.; Tang, T.-M. Toplogy of self-similar tiles in the plane with disconnected interiors, Topology Appl., Tome 150 (2005), pp. 139-155 | Article | MR 2133675 | Zbl 1077.37019

[23] Pommerenke, C. Univalent Functions, Vandenhoeck & Ruprecht, Göttingen (1975) | MR 507768 | Zbl 0298.30014

[24] Scheicher, K.; M. Thuswaldner, J. Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc., Tome 133 (2002), pp. 163-182 | Article | MR 1900260 | Zbl 1001.68070

[25] Scheicher, K.; M. Thuswaldner, J.; Grabner, P. Neighbours of self-affine tiles in lattice tilings, Fractals in Graz 2001. Analysis, dynamics, geometry, stochastics, Birkhäuser, Graz, Austria (Proceedings of the conference) (2003), pp. 241-262 | MR 2091708 | Zbl 1040.52013

[26] Strichartz, R.; Wang, Y. Geometry of self-affine tiles I, Indiana Univ. Math. J., Tome 23 (1999), pp. 1-23 | MR 1722192 | Zbl 0938.52017

[27] Thuswaldner, J. M. Attractors of invertible expanding linear operators and number systems in 2 , Publ. Math. Debrecen, Tome 58 (2001), pp. 423-440 | MR 1831051 | Zbl 1012.11009

[28] Vince, A. Digit tiling of euclidean space, Directions in Mathematical Quasicrystals, American Mathematical Society Providence, RI (2000), pp. 329-370 | MR 1798999 | Zbl 0972.52012