Soit sous-ensemble fermé polaire d’un domaine de . On donne une description complète de l’enveloppe pluripolaire du graphe d’une fonction holomorphe définie sur . Pour achever ce résultat on prouve des propriétés de semi-continuité et un principe de localisation de mesure pluriharmonique.
Let be a closed polar subset of a domain in . We give a complete description of the pluripolar hull of the graph of a holomorphic function defined on . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.
@article{AIF_2004__54_6_2085_0, author = {Edigarian, Armen and Wiegerinck, Jan}, title = {Determination of the pluripolar hull of graphs of certain holomorphic functions}, journal = {Annales de l'Institut Fourier}, volume = {54}, year = {2004}, pages = {2085-2104}, doi = {10.5802/aif.2075}, mrnumber = {2134233}, zbl = {1083.32009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2004__54_6_2085_0} }
Edigarian, Armen; Wiegerinck, Jan. Determination of the pluripolar hull of graphs of certain holomorphic functions. Annales de l'Institut Fourier, Tome 54 (2004) pp. 2085-2104. doi : 10.5802/aif.2075. http://gdmltest.u-ga.fr/item/AIF_2004__54_6_2085_0/
[1] Pluripolar hulls and holomorphic coverings, Israel J. Math, Tome 130 (2002), pp. 77-92 | MR 1919372 | Zbl 1011.32023
[2] Graphs that are not complete pluripolar, Proc. Amer. Math. Soc, Tome 131 (2003), pp. 2459-2465 | MR 1974644 | Zbl 1026.32063
[3] The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J, Tome 52 (2003) no. 6, pp. 1663-1680 | MR 2021052 | Zbl 1047.32021
[4] Distinguished homomorphisms and fiber algebras, Trans. Amer. Math. Soc (1970), pp. 455-474 | MR 303296 | Zbl 0212.15302
[5] Pluripotential Theory, Clarendon Press, London Math. Soc. Monographs, Tome 6 (1991) | MR 1150978 | Zbl 0742.31001
[6] Analytic disks and pluripolar sets, Indiana Univ. Math. J, Tome 41 (1992), pp. 515-532 | MR 1183357 | Zbl 0763.32010
[7] Pluripolar hulls, Michigan Math. J, Tome 46 (1999), pp. 151-162 | MR 1682895 | Zbl 0963.32024
[8] Cluster sets, Springer-Verlag (1960) | MR 133464 | Zbl 0090.28801
[9] Holomorphic currents, Indiana Univ. Math. J, Tome 42 (1993), pp. 85-144 | MR 1218708 | Zbl 0811.32010
[10] Analytic geometry on compacta in , Math. Zeitschrift, Tome 222 (1996), pp. 407-424 | MR 1400200 | Zbl 0849.32009
[11] personal communication (2003)
[12] Potential Theory in the Complex Plane, Cambridge University Press (1994) | MR 1334766 | Zbl 0828.31001
[13] Pluripolar sets and pseudocontinuation, Complex Analysis and Dynamical Systems II (Nahariya), AMS (Contemp. Math. (to appear)) (2003) | Zbl 1085.32015
[14] The pluripolar hull of , Ark. Mat, Tome 38 (2000), pp. 201-208 | MR 1749366 | Zbl 1021.32013
[15] Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J, Tome 47 (2000), pp. 191-197 | MR 1755265 | Zbl 0971.32015
[16] Pluripolar sets: hulls and completeness, Actes des rencontres d'analyse complexe Atlantique (2000) | Zbl 1032.32022
[17] Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc, Tome 144 (1969), pp. 241-270 | MR 252665 | Zbl 0188.45002
[18] Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math, Tome 50 (1989), pp. 81-91 | MR 1016623 | Zbl 0688.32004