Quantization and Morita equivalence for constant Dirac structures on tori
[Quantification et équivalence de Morita des structures de Dirac constantes sur les tores]
Tang, Xiang ; Weinstein, Alan
Annales de l'Institut Fourier, Tome 54 (2004), p. 1565-1580 / Harvested from Numdam

Nous définissons une quantification C * -algebrique des structures de Dirac constantes sur les tores, et nous démontrons que l’équivalence à O(n,n|) près des structures implique l’équivalence de Morita de leurs quantifications. Ce résultat complète et généralise un théorème de Rieffel et Schwarz, donné dans le cadre des structures de Poisson.

We define a C * -algebraic quantization of constant Dirac structures on tori and prove that O(n,n|)-equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.

Publié le : 2004-01-01
DOI : https://doi.org/10.5802/aif.2059
Classification:  46L65,  81S10
@article{AIF_2004__54_5_1565_0,
     author = {Tang, Xiang and Weinstein, Alan},
     title = {Quantization and Morita equivalence for constant Dirac structures on tori},
     journal = {Annales de l'Institut Fourier},
     volume = {54},
     year = {2004},
     pages = {1565-1580},
     doi = {10.5802/aif.2059},
     mrnumber = {2127858},
     zbl = {1068.46044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2004__54_5_1565_0}
}
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Tome 54 (2004) pp. 1565-1580. doi : 10.5802/aif.2059. http://gdmltest.u-ga.fr/item/AIF_2004__54_5_1565_0/

[1] J. Block & E. Getzler, Quantization of foliations, Vol. 1, 2, World Scientific, 1992, p. 471-487 | Zbl 0812.58028

[2] A. Connes, Noncommutative Geometry, Academic Press, 1994 | MR 1303779 | Zbl 0818.46076

[3] A. Connes, M.R. Douglas & A. Schwarz, Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR 1613978 | Zbl 1018.81052

[4] T.J. Courant, Dirac manifolds, Trans. A.M.S 319 (1990) p. 631-661 | MR 998124 | Zbl 0850.70212

[5] G. A. Elliott, On the K-theory of the C * algebras generated by a projective representation of a torsion-free discrete abelian group, Pitman, 1984, p. 157-184 | Zbl 0542.46030

[6] G.A. Elliott & H. Li, Morita equivalence of smooth noncommutative tori, e-print, math.OA/0311502 | Zbl 1137.46030

[7] H. Kajiura, Kronecker foliation, D1-branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys 8 (2002) no.50 | MR 1942142 | Zbl 1226.81097

[8] M. Kontsevich, Homological algebra of mirror symmetry., Vol. 1, 2, Birkhäuser, 1995, p. 120-139 | Zbl 0846.53021

[9] H. Li, Strong Morita equivalence of higher-dimensional noncommutative tori, e-print. To appear J. Reine Angew. Math., math.OA/0303123 | MR 2099203 | Zbl 1063.46057

[10] F. Lizzi & R. Szabo, Noncommutative Geometry and String Duality, J. High Energy Phys., 1999

[11] P.S. Muhly, J.N. Renault & D.P. Williams, Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory 17 (1987) p. 3-22 | MR 873460 | Zbl 0645.46040

[12] S. Mukai, Duality between D(X) and D(X ^) with its application to Picard sheaves, Nagoya Math. J. 81 (1981) p. 153-175 | MR 607081 | Zbl 0417.14036

[13] M.A. Rieffel, Morita equivalence for C * -algebras and W * -algebras, J. Pure Appl. Algebra 5 (1974) p. 51-96 | MR 367670 | Zbl 0295.46099

[14] M.A. Rieffel, C * -algebras associated with irrational rotations, Pacific. J. Math. 93 (1981) p. 415-429 | MR 623572 | Zbl 0499.46039

[15] M.A. Rieffel, Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988) p. 257-338 | MR 941652 | Zbl 0663.46073

[16] M.A. Rieffel, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989) p. 531-562 | MR 1002830 | Zbl 0679.46055

[17] M.A. Rieffel & A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999) p. 289-299 | MR 1687145 | Zbl 0968.46060

[18] A. Schwarz, Morita equivalence and duality, Lett. Math. Phys 50 (1999) p. 309-321 | MR 1663471 | Zbl 0967.58004

[19] X. Tang, Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids, e-print, math.QA/0405378 | Zbl 05051278

[20] A. Weinstein, Symplectic groupoids, geometric quantization, and irrational rotation algebras, MSRI Series, Springer, 1991, p. 281-290 | Zbl 0731.58031

[21] P. Xu, Noncommutative Poisson algebras, Amer. J. Math 116 (1994) p. 101-125 | MR 1262428 | Zbl 0797.58012