Fixed points of discrete nilpotent group actions on S 2
[Points fixes d’actions des groupes nilpotents discrets sur S 2 ]
Druck, Suely ; Fang, Fuquan ; Firmo, Sebastião
Annales de l'Institut Fourier, Tome 52 (2002), p. 1075-1091 / Harvested from Numdam

On démontre que pour chaque entier k2 il existe un voisinage ouvert 𝒱 k de l’application identité de la 2-sphère, pour la C 1 topologie, tel que : si G Diff 1 (S 2 ) est un sous-groupe nilpotent à longueur de nilpotence k, engendré par une famille quelconque d’éléments de 𝒱 k , alors l’action naturelle de G sur S 2 a un point fixe. De plus, en présence d’une orbite finie cette action a au moins deux points fixes.

We prove that for each integer k2 there is an open neighborhood 𝒱 k of the identity map of the 2-sphere S 2 , in C 1 topology such that: if G is a nilpotent subgroup of Diff 1 (S 2 ) with length k of nilpotency, generated by elements in 𝒱 k , then the natural G-action on S 2 has nonempty fixed point set. Moreover, the G-action has at least two fixed points if the action has a finite nontrivial orbit.

Publié le : 2002-01-01
DOI : https://doi.org/10.5802/aif.1912
Classification:  37B05,  37C25,  37C85
Mots clés: action de groupe, groupe nilpotent, point fixe
@article{AIF_2002__52_4_1075_0,
     author = {Druck, Suely and Fang, Fuquan and Firmo, Sebasti\~ao},
     title = {Fixed points of discrete nilpotent group actions on $S^2$},
     journal = {Annales de l'Institut Fourier},
     volume = {52},
     year = {2002},
     pages = {1075-1091},
     doi = {10.5802/aif.1912},
     mrnumber = {1926674},
     zbl = {1005.37019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2002__52_4_1075_0}
}
Druck, Suely; Fang, Fuquan; Firmo, Sebastião. Fixed points of discrete nilpotent group actions on $S^2$. Annales de l'Institut Fourier, Tome 52 (2002) pp. 1075-1091. doi : 10.5802/aif.1912. http://gdmltest.u-ga.fr/item/AIF_2002__52_4_1075_0/

[1] C. Bonatti Un point fixe commun pour des difféomorphismes commutants de S 2 , Annals of Math., Tome 129 (1989), pp. 61-69 | Article | MR 979600 | Zbl 0689.57019

[2] C. Bonatti Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology, Tome 29 (1989) no. 1, pp. 101-126 | Article | MR 1046627 | Zbl 0703.57015

[3] C. Camacho; A. Lins Neto Geometric Theory of Foliations, Birkhäuser, Boston (1985) | MR 824240 | Zbl 0568.57002

[4] S. Druck; F. Fang; S. Firmo Fixed points of discrete nilpotent groups actions on surfaces (In preparation)

[5] D.B.A. Epstein; W.P. Thurston Transformations groups and natural bundles, Proc. London Math. Soc., Tome 38 (1979), pp. 219-236 | Article | MR 531161 | Zbl 0409.58001

[6] E. Ghys Sur les groupes engendrés par des difféomorphismes proche de l'identité, Bol. Soc. Bras. Mat., Tome 24 (1993) no. 2, pp. 137-178 | Article | MR 1254981 | Zbl 0809.58004

[7] C. Godbillon Feuilletages - Études géométriques, Birkhäuser (1991) | MR 1120547 | Zbl 0724.58002

[8] M. Handel Commuting homeomorphisms of S 2 , Topology, Tome 31 (1992), pp. 293-303 | Article | MR 1167171 | Zbl 0755.57012

[9] E. Lima Commuting vector fields on 2-manifolds, Bull. Amer. Math. Soc., Tome 69 (1963), pp. 366-368 | Article | MR 149499 | Zbl 0117.17003

[10] E. Lima Commuting vector fields on S 2 , Proc. Amer. Math. Soc., Tome 15 (1964), pp. 138-141 | MR 159342 | Zbl 0117.17002

[11] E. Lima Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv., Tome 39 (1964), pp. 97-110 | Article | MR 176459 | Zbl 0124.16101

[12] J.F. Plante Fixed points of Lie group actions on surfaces, Ergod. Th \& Dynam. Sys., Tome 6 (1986), pp. 149-161 | MR 837981 | Zbl 0609.57020

[13] H. Poincaré Sur les courbes définis par une équation différentielle, J. Math. Pures Appl., Tome 4 (1885) no. 1, pp. 167-244 | JFM 17.0680.01

[14] M. Raghunathan Discrete subgroups of Lie groups, Springer-Verlag, Berlin, New York (1972) | MR 507234 | Zbl 0254.22005

[15] J. Rotman An introduction to the theory of groups, Springer-Verlag (1995) | MR 1307623 | Zbl 0810.20001