Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields
Gavrilov, Lubomir
Annales de l'Institut Fourier, Tome 49 (1999), p. 611-652 / Harvested from Numdam

Soit 𝒜 l’espace vectoriel des intégrales abéliennes

I(h)={Hh}R(x,y)dxdy,h[0,h˜]

H(x,y)=(x 2 +y 2 )/2+... est un polynôme réel fixé, R(x,y) est un polynôme réel quelconque, et {Hh} est l’intérieur de l’ovale de H qui contient l’origine et tend vers lui quand h0. Nous démontrons que si H(x,y) est un polynôme quasi-homogène avec des points critiques de Morse, alors 𝒜 est un [h]-module libre de type fini, dont nous calculons le rang. Nous trouvons les générateurs de 𝒜 dans le cas où H est de degré trois. Ce résultat est ensuite appliqué à l’étude des perturbations polynomiales de degré n des champs de vecteurs hamiltoniens quadratiques réversibles, avec un centre et un point selle. Nous démontrons que, si la fonction de Poincaré-Pontryagin n’est pas identiquement nulle, alors la borne supérieure exacte du nombre de cycles limites dans tout domaine compact du plan est égale à n-1.

Let 𝒜 be the real vector space of Abelian integrals

I(h)={Hh}R(x,y)dxdy,h[0,h˜]

where H(x,y)=(x 2 +y 2 )/2+... is a fixed real polynomial, R(x,y) is an arbitrary real polynomial and {Hh}, h[0,h ˜], is the interior of the oval of H which surrounds the origin and tends to it as h0. We prove that if H(x,y) is a semiweighted homogeneous polynomial with only Morse critical points, then 𝒜 is a free finitely generated module over the ring of real polynomials [h], and compute its rank. We find the generators of 𝒜 in the case when H is an arbitrary cubic polynomial. Finally we apply this in the study of degree n polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is n-1.

@article{AIF_1999__49_2_611_0,
     author = {Gavrilov, Lubomir},
     title = {Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields},
     journal = {Annales de l'Institut Fourier},
     volume = {49},
     year = {1999},
     pages = {611-652},
     doi = {10.5802/aif.1684},
     mrnumber = {2000c:34081},
     zbl = {0924.58077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1999__49_2_611_0}
}
Gavrilov, Lubomir. Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields. Annales de l'Institut Fourier, Tome 49 (1999) pp. 611-652. doi : 10.5802/aif.1684. http://gdmltest.u-ga.fr/item/AIF_1999__49_2_611_0/

[1] N. A'Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann., 213 (1975), 1-32. | MR 51 #13282 | Zbl 0316.14011

[2] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics, Birkhäuser, Boston, 1985 and 1988.

[3] V.I. Arnold, Yu. S. Il'Yashenko, Ordinary Differential Equations, in ‘Dynamical Systems, I', Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988. | Zbl 0718.34070

[4] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988.

[5] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperfläschen, Manuscripta Math., 2 (1970), 103-161. | MR 42 #2509 | Zbl 0186.26101

[6] L. Gavrilov, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity, 10 (1997), 433-448. | MR 98b:58143 | Zbl 0949.34077

[7] L. Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., 122 (1998), 571-584. | MR 99m:32043 | Zbl 0964.32022

[8] L. Gavrilov, Nonoscillation of elliptic integrals related to cubic polynomials of order three, Bull. London Math. Soc., 30 (1998), 267-273. | MR 99a:34077 | Zbl 0959.37039

[9] L. Gavrilov, Modules of Abelian integrals, Proc. of the IVth Catalan days of applied mathematics, p. 35-45, Tarragona, Spain, 1998. | MR 99e:32064 | Zbl 0911.32047

[10] L. Gavrilov, E. Horozov, Limit cycles of perturbations of quadratic vector fields, J. Math. Pures Appl., 72 (1993), 213-238. | MR 94d:58121 | Zbl 0829.58034

[11] P.A. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, 1978. | MR 80b:14001 | Zbl 0408.14001

[12] E. Horozov, I. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11 (1998), 1521-1537. | MR 99j:34036 | Zbl 0921.58044

[13] E. Horozov, I.D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc., 69 (1994), 198-224. | MR 95e:58146 | Zbl 0802.58046

[14] S.M. Husein-Zade, Dynkin digrams of singularities of functions of two variables, Functional Anal. Appl., 8 (1974), 10-13, 295-300. | Zbl 0309.14006

[15] I.D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. | MR 99a:34082 | Zbl 0920.34037

[16] I.D. Iliev, Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Diff. Equations, 1 (1996), 689-708. | MR 97k:34039 | Zbl 0851.34042

[17] Yu. Il'Yashenko, Dulac's memoir “On Limit Cycles” and related problems of the local theory of differential equations, Russian Math. Surveys, 40 (1985), 1-49. | Zbl 0668.34032

[18] B. Malgrange, Intégrales asymptotiques et monodromie, Ann. scient. Ec. Norm. Sup., 7 (1974), 405-430. | Numdam | MR 51 #8459 | Zbl 0305.32008

[19] P. Mardešić, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergod. Th. and Dynam. Sys., 10 (1990), 523-529. | MR 92b:58191 | Zbl 0691.58031

[20] P. Mardešić, Chebishev systems and the versal unfolding of the cusp of order n, Hermann, collection Travaux en Cours, 1998. | Zbl 0904.58044

[21] W.D. Neumann, Complex algebraic curves via their links at infinity, Inv. Math., 98 (1989), 445-489. | MR 91c:57014 | Zbl 0734.57011

[22] G.S. Petrov, Number of zeros of complete elliptic integrals, Funct. Anal. Appl., 18 (1984), 73-74. | MR 85j:33002 | Zbl 0547.14003

[23] G.S. Petrov, Elliptic integrals and their nonoscillation, Funct. Anal. Appl., 20 (1986), 37-40. | MR 87f:58031 | Zbl 0656.34017

[24] G.S. Petrov, Nonoscillation of elliptic integrals, Funct. Anal. Appl., 24 (1990), 45-50. | MR 92c:33036 | Zbl 0738.33013

[25] L.S. Pontryagin, On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz., 4 (1934), 234-238, in russian.

[26] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Math., (2), vol.17 (1986), 67-101. | Zbl 0628.34032

[27] C. Rousseau, H. Źoladek, Zeros of complete elliptic integrals for 1: 2 resonance, J. Diff. Equations, 94 (1991), 41-54. | MR 92j:58086 | Zbl 0738.33014

[28] M. Sebastiani, Preuve d'une conjecture de Brieskorn, Manuscripta Math., 2 (1970), 301-308. | MR 42 #2510 | Zbl 0194.11402

[29] H. Źoladek, Abelian integrals in unfolding of codimension 3 singular planar vector firlds, in 'Bifurcations of Planar Vector Fields', Lecture Notes in Math., vol. 1480, Springer (1991).

[30] H. Źoladek, Quadratic systems with center and their perturbations, J. Diff. Equations, 109 (1994), 223-273. | MR 95b:34047 | Zbl 0797.34044