Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents
Zorich, Anton
Annales de l'Institut Fourier, Tome 46 (1996), p. 325-370 / Harvested from Numdam

Nous construisons une application sur l’espace des échanges d’intervalles qui généralise l’application classique d’intervalle associée au développement en fraction continue. Cette application est fondée sur l’induction de Rauzy, mais à la différence des fonctions similaires connues jusqu’à présent cette application est ergodique par rapport à une mesure finie absolument continue sur l’espace des échanges d’intervalles. Nous présentons la procédure de calcul de cette mesure fondée sur la technique élaborée par W. Veech pour l’induction de Rauzy.

Nous étudions les exposants de Lyapunov définis par cette application. Soit m le nombre d’intervalles, et soit g le genre de la surface correspondante. Nous montrons qu’il y a m-2g exposants de Lyapunov qui sont égaux à zéro, alors que les autres 2g exposants sont distribués en tant que θ i =-θ m-i+1 . Nous donnons une formule explicite pour l’exposant le plus grand.

We construct a map on the space of interval exchange transformations, which generalizes the classical map on the interval, related to continued fraction expansion. This map is based on Rauzy induction, but unlike its relative kown up to now, the map is ergodic with respect to some finite absolutely continuous measure on the space of interval exchange transformations. We present the prescription for calculation of this measure based on technique developed by W. Veech for Rauzy induction.

We study Lyapunov exponents related to this map and show that when the number of intervals is m, and the genus of corresponding surface is g, there are m-2g Lyapunov exponents, which are equal to zero, while the remaining 2g ones are distributed into pairs θ i =-θ m-i+1 . We present an explicit formula for the largest one.

@article{AIF_1996__46_2_325_0,
     author = {Zorich, Anton},
     title = {Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents},
     journal = {Annales de l'Institut Fourier},
     volume = {46},
     year = {1996},
     pages = {325-370},
     doi = {10.5802/aif.1517},
     mrnumber = {97f:58081},
     zbl = {0853.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1996__46_2_325_0}
}
Zorich, Anton. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Annales de l'Institut Fourier, Tome 46 (1996) pp. 325-370. doi : 10.5802/aif.1517. http://gdmltest.u-ga.fr/item/AIF_1996__46_2_325_0/

[1] P. Arnoux, G. Levitt, Sur l'unique ergodicité des 1-formes fermées singulières, Inventiones Math., 85 (1986), 141-156 & 645-664. | MR 87g:58004 | Zbl 0577.58021

[2] P. Arnoux, A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. scient. Éc. Norm. Sup., 4e série, 26 (1993), 645-664. | Numdam | MR 95h:11076 | Zbl 0801.11036

[3] G. Benettin, I. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems ; a method for computing all of them. Part 1 : theory. Meccanica (1980), 9-20. | Zbl 0488.70015

[4] A.B. Katok, Invariant measures of flows on oriented surfaces, Soviet Math. Dokl., 14 (1973), 1104-1108. | Zbl 0298.28013

[5] M. Keane, Interval exchange transformations, Math. Z., 141, (1975), 25-31. | MR 50 #10207 | Zbl 0278.28010

[6] S.P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergod. Th. & Dynam. Sys., 5 (1985), 257-271. | MR 87g:58075 | Zbl 0597.58024

[7] S. Kerckhoff, H. Masur, J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Math., 124 (1986), 293-311. | MR 88f:58122 | Zbl 0637.58010

[8] A. Maier, On trajectories on closed orientable surfaces, Mat. Sbornik, 12 (1943), 71-84. | Zbl 0063.03856

[9] H. Masur, Interval exchange transformations and measured foliations, Annals of Math., 115-1 (1982), 169-200. | MR 83e:28012 | Zbl 0497.28012

[10] A. Nogueira, D. Rudolph, Topological weakly mixing of interval exchange maps, to appear. | Zbl 0958.37010

[11] A. Nogueira, The 3-dimensional Poincaré continued fraction algorithm, preprint ENSL, 93 (1993), 1-25.

[12] V.I. Oseledets, A Multiplicative Ergodic Theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. | Zbl 0236.93034

[13] G. Rauzy, Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. | MR 82m:10076 | Zbl 0414.28018

[14] S. Schwartzman, Asymptotic cycles, Annals of Mathematics, 66 (1957), 270-284. | MR 19,568i | Zbl 0207.22603

[15] W.A. Veech, Projective swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic Theory and Dynamical Systems, Vol. I, in Progress in Mathematics, Birkhauser, Boston, 1981, 113-193.

[16] W.A. Veech, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242. | MR 83g:28036b | Zbl 0486.28014

[17] W.A. Veech, The metric theory of interval exchange transformations I. Generic spectral properties, Amer. Journal of Math., 106 (1984), 1331-1359. | MR 87j:28024a | Zbl 0631.28006

[18] W.A. Veech, The metric theory of interval exchange transformations II. Approximation by primitive interval exchanges, Amer. Journal of Math., 106 (1984), 1361-1387. | MR 87j:28024b | Zbl 0631.28007

[19] W.A. Veech, The Teichmüller geodesic flow, Annals of Mathematics, 124 (1986), 441-530. | MR 88g:58153 | Zbl 0658.32016

[20] W.A. Veech, Moduli spaces of quadratic differentials, Journal d'Analyse Mathématique, 55 (1990), 117-171. | MR 92e:32014 | Zbl 0722.30032

[21] M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. | MR 86h:58090 | Zbl 0578.58033

[22] A. Zorich, Asymptotic flag of an orientable measured foliation on a surface, in “Geometric Study of Foliations”, World Sci., 1994, 479-498.