Analytic potential theory over the p-adics
Haran, Shai
Annales de l'Institut Fourier, Tome 43 (1993), p. 905-944 / Harvested from Numdam

Sur un corps non-archimédien, la valeur absolue élevée à une puissance α>0 arbitraire est une fonction définie négative et engendre (l’analogue d’un) un processus stable symétrique. Pour α(0,1) ce processus est transitoire et nous développons sa théorie du potentiel purement analytiquement et de manière explicite, en insistant sur la particularité résultant de la situation non-archimédienne. Par exemple, l’inégalité de Harnack devient une égalité.

Over a non-archimedean local field the absolute value, raised to any positive power α>0, is a negative definite function and generates (the analogue of) the symmetric stable process. For α(0,1), this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.

@article{AIF_1993__43_4_905_0,
     author = {Haran, Shai},
     title = {Analytic potential theory over the $p$-adics},
     journal = {Annales de l'Institut Fourier},
     volume = {43},
     year = {1993},
     pages = {905-944},
     doi = {10.5802/aif.1361},
     mrnumber = {95c:11141},
     zbl = {0847.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1993__43_4_905_0}
}
Haran, Shai. Analytic potential theory over the $p$-adics. Annales de l'Institut Fourier, Tome 43 (1993) pp. 905-944. doi : 10.5802/aif.1361. http://gdmltest.u-ga.fr/item/AIF_1993__43_4_905_0/

[1] C. Berg, G. Forst, Potential theory on locally compact abelian groups, Ergebn. d. Math., 87, Springer-Verlag (1975). | MR 58 #1204 | Zbl 0308.31001

[2] J. Bliedtner, W. Hansen, Potential theory, Universitext, Springer-Verlag (1986). | Zbl 0706.31001

[3] J.W.S. Cassels, A. Fröhlich, Algebraic number theory, Thompson, 1967. | Zbl 0153.07403

[4] W. Feller, An introduction to probability theory and its applications, Vol. II, John Wiley & Sons, 1970.

[5] S. Haran, Riesz potentials and explicit sums in arithmetic, Inventiones Math., 101 (1990), 697-703. | MR 91g:11132 | Zbl 0788.11055

[6] S. Haran, Index theory, potential theory and the Riemann hypothesis, in Proc. LMS Symp. on L-functions and Arithmetic, Durham, 1989. | Zbl 0744.11042

[7] G.A. Hunt, Markoff processes and potentials I-III, Illinois J. Math., 1 (1957), 44-93 and 316-369 ; 2 (1958), 151-213. | Zbl 0100.13804

[8] N.S. Landkof, Foundations of modern potential theory, Grundl. d. math. Wiss., 180, Springer-Verlag (1972). | MR 50 #2520 | Zbl 0253.31001

[9] S.C. Port, C.J. Stone, Infinitely divisible processes and their potential theory I-II, Ann. Inst. Fourier, 21-2 (1971), 157-275 ; 21-4 (1971), 179-265. | Numdam | MR 49 #11640 | Zbl 0195.47601

[10] M. Taibleson, Fourier analysis over local fields, Princeton Univ. Press, 1975. | MR 58 #6943 | Zbl 0319.42011

[11] A. Weil, Fonction zêta et distributions, séminaire Bourbaki (1966), 312. | Numdam | MR 1610983 | Zbl 0226.12008