Soit une surface -analytique, compacte, lisse, sans diviseurs, et un fibré vectoriel holomorphe de rang 2 sur . Le fibré projectif associé, , n’aura pas de diviseurs si et seulement si est “fortement” irréductible. On prouve l’existence de tels fibrés.
Let be a compact complex nonsingular surface without curves, and a holomorphic vector bundle of rank 2 on . It turns out that the associated projective bundle has no divisors if and only if is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.
@article{AIF_1989__39_1_239_0, author = {Toma, Matei}, title = {A class of non-algebraic threefolds}, journal = {Annales de l'Institut Fourier}, volume = {39}, year = {1989}, pages = {239-250}, doi = {10.5802/aif.1166}, mrnumber = {90k:32084}, zbl = {0659.32024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1989__39_1_239_0} }
Toma, Matei. A class of non-algebraic threefolds. Annales de l'Institut Fourier, Tome 39 (1989) pp. 239-250. doi : 10.5802/aif.1166. http://gdmltest.u-ga.fr/item/AIF_1989__39_1_239_0/
[1] Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. reine angew. Math., 378 (1987), 1-31. | MR 89h:32054 | Zbl 0624.32017
& ,[2] Compact complex surfaces, Berlin-Heidelberg-New York, 1984. | MR 86c:32026 | Zbl 0718.14023
, & ,[3] Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier, 32-4 (1982), 25-51. | Numdam | MR 84f:32035 | Zbl 0488.32012
& ,[4] Complex Analytic Geometry, LNM 538, Berlin-Heidelberg-New York, 1976. | MR 55 #3291 | Zbl 0343.32002
,[5] Coherent analytic sheaves, Berlin-Heidelberg-New-York, 1984. | MR 86a:32001 | Zbl 0537.32001
& ,[6] Abelian varieties, Oxford Univ. Press, 1970. | MR 44 #219 | Zbl 0223.14022
,