Nous montrons qu’une surface minimale complété, plongée dans , de courbure totale finie et homéomorphe a moins deux points est l’hélicoïde.
We show that a complete minimal surface embedded in with finite total curvature which is homeomorphic to minus two points is the “hélicoïde”’.
@article{AIF_1988__38_4_121_0, author = {Toubiana, Eric}, title = {Un th\'eor\`eme d'unicit\'e de l'h\'elico\"\i de}, journal = {Annales de l'Institut Fourier}, volume = {38}, year = {1988}, pages = {121-132}, doi = {10.5802/aif.1151}, mrnumber = {90a:53015}, zbl = {0645.53032}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1988__38_4_121_0} }
Toubiana, Eric. Un théorème d'unicité de l'hélicoïde. Annales de l'Institut Fourier, Tome 38 (1988) pp. 121-132. doi : 10.5802/aif.1151. http://gdmltest.u-ga.fr/item/AIF_1988__38_4_121_0/
[1] The topology of complete minimal surfaces of finite total Gaussian curvature. Topology, Vol. 22, n° 2 (1983), 203-221. | MR 84d:53006 | Zbl 0517.53008
, ,[2] Complete minimal surfaces with long lines boundary. A paraître dans Duke Mathematical Journal. | Zbl 0637.53007
, , ,[3] Lectures on minimal submanifolds, Vol. 1, Math-lecture Series 9, Publish or Perish. | Zbl 0434.53006
,[4] A survey of minimal surfaces. Van Nostrand Reinhold Math. Studies, 25, 1969. | MR 41 #934 | Zbl 0209.52901
,[5] Global properties of minimal surfaces in E3 and En, Annals of Math., Vol. 80 (1964), 340-364. | MR 31 #3946 | Zbl 0134.38502
,[6] uvres complètes, tome XIII des mémoires de la société royale de Goettinguen (1987), p. 305.
,[7] Thèse de doctorat.
,