Pour tout , on calcule un rang tel que tout entier algébrique de degré au moins ait deux conjugués vérifiant . De plus, on donne une nouvelle preuve de l’égalité .
For any , we compute a rank such that for any algebraic integer of degree at least , there are two conjugates , of a with . Further, we give a new proof of ..
@article{AIF_1988__38_2_1_0, author = {Langevin, Michel}, title = {Solution des probl\`emes de Favard}, journal = {Annales de l'Institut Fourier}, volume = {38}, year = {1988}, pages = {1-10}, doi = {10.5802/aif.1132}, mrnumber = {90b:11104}, zbl = {0634.12002}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1988__38_2_1_0} }
Langevin, Michel. Solution des problèmes de Favard. Annales de l'Institut Fourier, Tome 38 (1988) pp. 1-10. doi : 10.5802/aif.1132. http://gdmltest.u-ga.fr/item/AIF_1988__38_2_1_0/
[LRR] Diamètres transfinis et problème de Favard, Ann. Inst. Fourier, 38-1 (1988), 1-16. | Numdam | MR 90b:11103 | Zbl 0634.12003
, , ,[L1] Méthode de Fekete-Szegö et problème de Favard, C.R. Acad. Sc. Paris, t. 302 (1986), 431-434. | MR 87e:11121 | Zbl 0585.12014
,[L2] Approche géométrique du problème de Favard, C.R. Acad. Sc. Paris, t. 304 (1987), 245-248. | MR 88e:12001 | Zbl 0608.12024
,[L3] Solution des problèmes de Favard (exposé du 27/03/87 au Séminaire de Théorie des Nombres de Bordeaux ; à paraître).
,[Oe] Démonstration de la conjecture de Bieberbach (d'après L. de Branges), Séminaire Bourbaki, Juin 1985, n° 649. | Numdam | Zbl 0625.30019
,[PS] Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951, ou Kraus Reprint Corporation. | Zbl 0044.38301
, ,