Characteristic Cauchy problems and solutions of formal power series
Ouchi, Sunao
Annales de l'Institut Fourier, Tome 33 (1983), p. 131-176 / Harvested from Numdam

Soit L(z, z )=( z 0 ) k -A(z, z ) un opérateur linéaire différentiel à coefficients holomorphes, où

A(z,z)=j=0k-1Aj(z,z)(z0)j, ord .A(z,z)=m>k

et

z=(z0,z)Cn+1.

On considère le problème de Cauchy aux données holomorphes

L(z,z)u(z)=f(z),(z0)iu(0,z)=u^i(z)(0ik-1).

On peut facilement obtenir une solution formelle u ^(z)= n=0 u ^ n (z )(z 0 ) n /n!, mais en général elle diverge. On montre sous certaines conditions que pour un secteur arbitraire S d’ouverture moindre qu’une constante déterminée par L(z, z ), il y a une fonction u S (z) holomorphe sauf sur {z 0 =0}, telle que L(z, z )u S (z)=f(z) et u S (z)u ^(z) quand z 0 0 dans S.

Let L(z, z )=( z 0 ) k -A(z, z ) be a linear partial differential operator with holomorphic coefficients, where

A(z,z)=j=0k-1Aj(z,z)(z0)j, ord .A(z,z)=m>k

and

z=(z0,z)Cn+1.

We consider Cauchy problem with holomorphic data

L(z,z)u(z)=f(z),(z0)iu(0,z)=u^i(z)(0ik-1).

We can easily get a formal solution u ^(z)= n=0 u ^ n (z )(z 0 ) n /n!, bu in general it diverges. We show under some conditions that for any sector S with the opening less that a constant determined by L(z, z ), there is a function u S (z) holomorphic except on {z 0 =0} such that L(z, z )u S (z)=f(z) and u S (z)u ^(z) as z 0 0 in S.

@article{AIF_1983__33_1_131_0,
     author = {Ouchi, Sunao},
     title = {Characteristic Cauchy problems and solutions of formal power series},
     journal = {Annales de l'Institut Fourier},
     volume = {33},
     year = {1983},
     pages = {131-176},
     doi = {10.5802/aif.907},
     mrnumber = {85g:35014},
     zbl = {0494.35017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1983__33_1_131_0}
}
Ouchi, Sunao. Characteristic Cauchy problems and solutions of formal power series. Annales de l'Institut Fourier, Tome 33 (1983) pp. 131-176. doi : 10.5802/aif.907. http://gdmltest.u-ga.fr/item/AIF_1983__33_1_131_0/

[1] Y. Hamada, The singularity of solutions of Cauchy problem, Publ. Res. Inst. Math. Sci., 5 (1969), 21-40. | MR 40 #3056 | Zbl 0203.40702

[2] Y. Hamada, Problème analytique de Cauchy à caractéristiques multiples dont les données de Cauchy ont des singularités polaires, C.R.A.S., Paris, Ser. A, 276 (1973), 1681-1684. | MR 48 #4482 | Zbl 0256.35012

[3] Y. Hamada, J. Leray et C. Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples ; Problème de Cauchy ramifié ; hyperbolicité partielle, J. Math. Pure Appl., 55 (1971), 297-352. | MR 55 #8572 | Zbl 0307.35056

[4] H. Komatsu, Irregularity of characteristic elements and construction of null solutions, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 23 (1976), 297-342. | MR 54 #5596 | Zbl 0443.35009

[5] S. Mizohata, On kowalewskian systems, Russian Math. Survey, 29, vol. 2 (1974), 223-235. | MR 53 #6063 | Zbl 0305.35003

[6] S. Ōuchi, Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 1-36. | MR 81m:35019 | Zbl 0441.35020

[7] S. Ōuchi, An integral representation of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 37-85. | MR 82e:35002 | Zbl 0439.35019

[8] S. Ōuchi, Characteristic Cauchy problems and solutions of formal power series, Proc. Japan Acad., vol. 56 (1980), 372-375. | MR 83g:35024 | Zbl 0467.35001

[9] J. Persson, On the Cauchy problem in Cn with singular data, Mathematiche, 30 (1975), 339-362. | MR 56 #16128 | Zbl 0359.35048

[10] C. Wagschal, Problème de Cauchy analytique à données méromorphes, J. Math. Pure Appl., 51 (1972), 375-397. | MR 50 #784 | Zbl 0242.35016

[11] W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience Publishers, 1965. | MR 34 #3041 | Zbl 0133.35301