Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets
Sjögren, Peter ; Sjölin, Per
Annales de l'Institut Fourier, Tome 31 (1981), p. 157-175 / Harvested from Numdam

Soit ER un ensemble fermé de mesure nulle. On démontre une équivalence entre la décomposition de Littlewood-Paley dans L p par rapport aux intervalles complémentaires de E et les multiplicateurs de Fourier du type de Hörmander-Mihlin et de Marcinkiewicz ayant des singularités sur E. Des propriétés analogues sont étudiées dans R 2 pour une réunion de rayons partant de l’origine. Dans ce cas, on considère aussi la fonction maximale par rapport aux rectangles parallèles à ces rayons. On montre notamment que l’opérateur défini par cette fonction maximale est borné dans L p , 1<p<, quand les rayons forment une suite lacunaire itérée.

Let ER be a closed null set. We prove an equivalence between the Littlewood-Paley decomposition in L p with respect to the complementary intervals of E and Fourier multipliers of Hörmander-Mihlin and Marcinkiewicz type with singularities on E. Similar properties are studied in R 2 for a union of rays from the origin. Then there are connections with the maximal function operator with respect to all rectangles parallel to these rays. In particular, this maximal operator is proved to be bounded on L p , 1<p<, when the rays form an iterated lacunary sequence.

@article{AIF_1981__31_1_157_0,
     author = {Sj\"ogren, Peter and Sj\"olin, Per},
     title = {Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets},
     journal = {Annales de l'Institut Fourier},
     volume = {31},
     year = {1981},
     pages = {157-175},
     doi = {10.5802/aif.821},
     mrnumber = {82g:42014},
     zbl = {0437.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1981__31_1_157_0}
}
Sjögren, Peter; Sjölin, Per. Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Annales de l'Institut Fourier, Tome 31 (1981) pp. 157-175. doi : 10.5802/aif.821. http://gdmltest.u-ga.fr/item/AIF_1981__31_1_157_0/

[1] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. | MR 54 #8132 | Zbl 0356.44003

[2] A. Cordoba and R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Natl. Acad. Sci. USA, 74 (1977), 423-425. | MR 55 #6096 | Zbl 0342.42003

[3] M. Jodeit Jr, A note on Fourier multipliers, Proc. Amer. Math. Soc., 27 (1971), 423-424. | MR 42 #4965 | Zbl 0214.13301

[4] D.S. Kurtz and R.L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343-362. | MR 81j:42021 | Zbl 0427.42004

[5] A. Nagel, E.M. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Natl. Acad. Sci. USA, 75 (1978), 1060-1062. | MR 57 #6349 | Zbl 0391.42015

[6] J.L. Rubio De Francia, Vector valued inequalities for operators in Lp spaces, Bull. London Math. Soc., 12 (1980), 211-215. | MR 81g:42024 | Zbl 0417.47010

[7] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR 44 #7280 | Zbl 0207.13501