Spectral synthesis and the Pompeiu problem
Brown, L. ; Schreiber, B. ; Taylor, B. A.
Annales de l'Institut Fourier, Tome 23 (1973), p. 125-154 / Harvested from Numdam

On démontre que chaque sous-espace vectoriel fermé V de C(R n ) ou de E(R n ), n2, invariant par toutes les rotations et toutes les translations de R n est un espace de synthèse spectrale, c’est-à-dire, V est engendré par les exponentielles-polynômes qu’il contient. C’est un problème classique de déterminer toutes les mesures μ à support compact dans R 2 qui possèdent la propriété suivante : (P) Si fC(R 2 ) et R 2 fσdμ=0 quel que soit la transformation rigide σ de R 2 , alors f0. Comme application du résultat ci-dessus on caractérise ces mesures moyennant les transformées de Fourier-Laplace. Ce résultat et quelques estimations asymptotiques de la croissance des transformées de Fourier-Laplace le long de certaines courbes tendant vers l’infini montrent que, pour une classe assez grande de régions compactes de R 2 , les mesures de surface satisfont à la condition (P). Le théorème de synthèse spectrale implique aussi un théorème de Delsarte (deux cercles) se rapportant aux fonctions harmoniques et quelques résultats analogues au théorème de Morera.

It is shown that every closed rotation and translation invariant subspace V of C(R n ) or δ(R n ), n2, is of spectral synthesis, i.e. V is spanned by the polynomial-exponential functions it contains. It is a classical problem to find those measures μ of compact support on R 2 with the following property: (P) The only function fC(R 2 ) satisfying R 2 fσdμ=0 for all rigid motions σ of R 2 is the zero function. As an application of the above result a characterization of such measures is obtained in terms of their Fourier-Laplace transforms. Using this characterization, along with asymptotic estimates of the growth of Fourier-Laplace transforms along certain curves, it is shown that property (P) is satisfied by the area measures on a large class of compact regions in the plane. The spectral synthesis theorem also implies Delsarte’s two circle theorem for harmonic functions and other results related to Morera’s converse of the Cauchy integral theorem.

@article{AIF_1973__23_3_125_0,
     author = {Brown, L. and Schreiber, B. and Taylor, B. A.},
     title = {Spectral synthesis and the Pompeiu problem},
     journal = {Annales de l'Institut Fourier},
     volume = {23},
     year = {1973},
     pages = {125-154},
     doi = {10.5802/aif.474},
     mrnumber = {50 \#4979},
     zbl = {0265.46044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1973__23_3_125_0}
}
Brown, L.; Schreiber, B.; Taylor, B. A. Spectral synthesis and the Pompeiu problem. Annales de l'Institut Fourier, Tome 23 (1973) pp. 125-154. doi : 10.5802/aif.474. http://gdmltest.u-ga.fr/item/AIF_1973__23_3_125_0/

[1] L. Brown, F. Schnitzer and A.L. Shields, A note on a problem of D. Pompeiu, Math. Zeitschr., 105 (1968), 59-61. | MR 37 #2156 | Zbl 0161.24704

[2] C. Christov, Sur un problème de M. Pompeiu, Mathematica (Timisoara), 23 (1948), 103-107. | MR 10,20d | Zbl 0031.01503

[3] C. Christov, Sur l'équation intégrale généralisée de M. Pompeiu, Annuaire Univ. Sofia Fac. Sci., Livre 1, 45 (1948-1949), 167-178.

[4] R.V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill, New York, 1963. | MR 26 #6665 | Zbl 0115.05802

[5] J. Delsarte, Note sur une propriété nouvelle des fonctions harmoniques, C.R. Acad. Sci. Paris, 246 (1958), 1358-1360. | MR 20 #2548 | Zbl 0084.09403

[6] J. Delsarte, Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem, Notes by K.B. Vedak, Tata Institute of Fundamental Research, Bombay, 1961.

[7] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Interscience, Wiley, New York, 1970. | MR 44 #3066 | Zbl 0195.10401

[8] T.W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. | MR 53 #14137 | Zbl 0213.40401

[9] L. Hörmander, Linear Partial Differential Operators, Grundl. der Math. Wiss., Band 116, Springer-Verlag and Academic Press, New York, 1963. | MR 28 #4221 | Zbl 0108.09301

[10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. van Nostrand, New York, 1966. | MR 203075 | Zbl 0138.06203

[11] J.J. Kelleher and B.A. Taylor, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math., 255 (1972), 190-209. | MR 306925 | MR 46 #6046 | Zbl 0237.46052

[12] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 271-355. | Numdam | MR 86990 | MR 19,280a | Zbl 0071.09002

[13] D. Pompeiu, Sur une propriété des fonctions continues dépendent de plusieurs variables, Bull. Sci. Math. (2), 53 (1929), 328-332. | JFM 55.0138.04

[14] D. Pompeiu, Sur une propriété intégrale des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265-269. | JFM 55.0139.01

[15] S.P. Ponomarev, On a condition for analyticity, Sibirskii Mat. Zh., 11 (1970), 471-474. | MR 264039 | Zbl 0203.07201

[16] W. Rudin, Fourier Analysis on Groups, Interscience, Wiley, New York, 1962. | MR 152834 | MR 27 #2808 | Zbl 0107.09603

[17] L. Schwartz, Théorie générale des fonctions moyennes-périodiques, Ann. of Math. (2), 48 (1947), 857-929. | MR 23948 | MR 9,428c | Zbl 0030.15004

[18] L. Schwartz, Théorie des distributions, 2nd. ed., Act. Scient. et Indust., No. 1091, Hermann, Paris, 1957. | MR 21 #6534 | Zbl 0078.11003

[19] L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237-254. | MR 348084 | MR 50 #582 | Zbl 0251.30047