Soit une -variété close et connexe munie d’une action localement libre de sur , on démontre : si ne contient pas d’éléments d’ordre fini, l’inclusion de toute feuille de dans induit un monomorphisme des groupes fondamentaux.
Comme application on prouve que le rang de est .
Let be a closed and connected -manifold with a locally free action of on , we prove : if has no element of finite order the inclusion of a leaf of into induces a monomorphism between the fundamentals groups.
As an application we prove that the rank of is .
@article{AIF_1970__20_1_1_0, author = {Garan\c con, Maurice}, title = {Le rang de certaines vari\'et\'es closes}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {1-19}, doi = {10.5802/aif.336}, mrnumber = {42 \#1142}, zbl = {0187.20402}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_1_1_0} }
Garançon, Maurice. Le rang de certaines variétés closes. Annales de l'Institut Fourier, Tome 20 (1970) pp. 1-19. doi : 10.5802/aif.336. http://gdmltest.u-ga.fr/item/AIF_1970__20_1_1_0/
[1] “Commuting vector fields on S3”, Annals of Math. 8, (1965). | MR 30 #1517 | Zbl 0137.17801
,[2] Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110. | MR 31 #731 | Zbl 0124.16101
,[3] “The Topology Summer inst. Seattle 1963”. Russiom Math. Surveys, vol. 20 (1965). | MR 33 #716 | Zbl 0125.39804
, 1)2) “Topology of Foliations”, Trudy mosk. math. Obshlch 14, n° 513.83.
[4] “Action of Rn on manifolds” Comm. Math. Helvetici vol. 41 (3) (1966-1967). | MR 34 #6794 | Zbl 0145.20301
,[5] “Rank of S2 x S1” American J. of Math., vol. 87 (1965). | MR 31 #764 | Zbl 0132.19803
,[6] “Foliations by planes” Topology, vol. 7 (1968). | MR 37 #3595 | Zbl 0157.30504
,[7] “Singularities of R2 actions” Topology, vol. 7 (1968). | MR 37 #3596 | Zbl 0157.30601
,[8] “Un lemme sur les applications différentiables”. Bol. Soc. Math. Mex. (2) (1956) 59-71. | MR 21 #910 | Zbl 0075.32201
,