Cet article est la suite d’une publication antérieure [Inventiones Math., 8 (1969), 175-221]. On développe, à partir d’un espace et d’un faisceau défini là-dessus, satisfaisant aux axiomes de Brelot et, localement, aux hypothèses de la théorie des faisceaux adjoints, les sujets suivants : 1) l’extension de la théorie des faisceaux adjoints au cas où n’admet pas de potentiel global (cas particulier : compact). 2) La construction d’une nouvelle résolution fine de , étant un faisceau naturel de mesures sur . 3) La construction d’une dualité naturelle entre et ( supports compacts), faisant correspondre le flux à un élément positif distingué de .
This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space and a sheaf over are given, such that the pair satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where does not admit a global potential (in particular, the case where is compact). 2) Construction of a new fine resolution of the sheaf , in which is a (complete pre-)sheaf of measures on . 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of .
@article{AIF_1969__19_2_371_0, author = {Walsh, Bertram}, title = {Flux in axiomatic potential theory. II. Duality}, journal = {Annales de l'Institut Fourier}, volume = {19}, year = {1969}, pages = {371-417}, doi = {10.5802/aif.331}, mrnumber = {42 \#2023}, zbl = {0181.11703}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1969__19_2_371_0} }
Walsh, Bertram. Flux in axiomatic potential theory. II. Duality. Annales de l'Institut Fourier, Tome 19 (1969) pp. 371-417. doi : 10.5802/aif.331. http://gdmltest.u-ga.fr/item/AIF_1969__19_2_371_0/
[1] Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). | Zbl 0142.38402
,[2] Axiomatic theory of harmonic functions : Nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble) 15 (1965), 283-312. | Numdam | MR 32 #2603 | Zbl 0139.06604
, and ,[3] Sheaf Theory, McGraw-Hill, (1967). | MR 36 #4552 | Zbl 0158.20505
,[4] Lectures on Potential Theory, Tata Institute, Bombay, 1960. | MR 22 #9749 | Zbl 0098.06903
,[5] Lectures on Sheaf Theory, Tata Institute, Bombay, 1957.
,[6] Linear Operators I, Interscience, New York, 1958. | MR 22 #8302 | Zbl 0084.10402
and ,[7] Lectures on Riemann Surfaces, Princeton Univ. Press, 1966. | MR 34 #7789 | Zbl 0175.36801
,[8] Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. | MR 31 #4927 | Zbl 0141.08601
and ,[9] Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. | Numdam | MR 25 #3186 | Zbl 0101.08103
,[10] An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. | Numdam | MR 37 #3039 | Zbl 0172.15101
,[11] Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ. Ser. A-1 30 (1966), 197-215. | Zbl 0168.09702
,[12] Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier (Grenoble) 13 (1963), 357-372. | Numdam | MR 29 #260 | Zbl 0116.30404
,[13] Principal Functions, van Nostrand, Princeton, 1968. | MR 37 #5378 | Zbl 0159.10701
and ,[14] Topological Vector Spaces, Macmillan, New York, 1966. | MR 33 #1689 | Zbl 0141.30503
,[15] Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715. | MR 36 #1996 | Zbl 0168.11801
,[16] Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. | MR 35 #407 | Zbl 0144.15503
and ,[17] Intégration, Ch. V : Intégration des Mesures, Hermann et Cie, Paris, 1956.
,[18] Randintegrale und nukleare Funktionenräume, Ann. Inst. Fourier (Grenoble) 17 (1967), 225-271. | Numdam | MR 36 #6914 | Zbl 0165.14702
,[19] Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 17 (1967), 383-399. | Numdam | MR 37 #3040 | Zbl 0153.15501
,[20] Dualität in der Potentialtheorie, Port. Math. 13 (1954), 55-86. | MR 16,718b | Zbl 0056.33403
,[21] Flux in axiomatic potential theory. I : Cohomology, Inventiones Math. 8 (1969), 175-221. | MR 42 #532 | Zbl 0179.15203
,