Theory of Bessel potentials. III: Potentials on regular manifolds
Adams, Robert ; Aronszajn, Nachman ; Hanna, M. S.
Annales de l'Institut Fourier, Tome 19 (1969), p. 279-338 / Harvested from Numdam

On étudie ici les potentiels besseliens sur des variétés riemanniennes de classe C bordées ou ouvertes. Soient : M une variété n-dimensionnelle et N une sous-variété de M de dimension k. On donne des conditions suffisantes pour que : 1) la restriction à N d’un potentiel α sur M soit un potentiel d’ordre α-n-k 2 sur N ; 2) un potentiel d’ordre α-n-k 2 sur N admette une extension à un potentiel d’ordre α sur M. On prouve aussi que pour une variété bordée M la restriction à son intérieur M i est un isomorphisme isométrique entre l’espace des potentiels d’ordre α sur M, et l’espace des potentiels d’ordre α sur M i .

In this paper Bessel potentials on C -Riemannian manifolds (open or bordered) are studied. Let M be an n-dimensional manifold, and N a submanifold of M of dimension k. Sufficient conditions are given for: 1) the restriction to N of any potential of order α on M to be a potential of order α-n-k 2 on N ; 2) any potential of order α-n-k 2 on N to be extendable to a potential of order α on M. It is also proved that for a bordered manifold M the restriction to its interior M i is an isometric isomorphism between the spaces of potentials of order α on M and M i respectively.

@article{AIF_1969__19_2_279_0,
     author = {Adams, Robert and Aronszajn, Nachman and Hanna, M. S.},
     title = {Theory of Bessel potentials. III: Potentials on regular manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {19},
     year = {1969},
     pages = {279-338},
     doi = {10.5802/aif.328},
     mrnumber = {54 \#915},
     zbl = {0176.09902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1969__19_2_279_0}
}
Adams, Robert; Aronszajn, Nachman; Hanna, M. S. Theory of Bessel potentials. III: Potentials on regular manifolds. Annales de l'Institut Fourier, Tome 19 (1969) pp. 279-338. doi : 10.5802/aif.328. http://gdmltest.u-ga.fr/item/AIF_1969__19_2_279_0/

[1] R. Adams, N. Aronszajn and K. T. Smith, Theory of Bessel Potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. | Numdam | MR 37 #4281 | Zbl 0185.19703

[2] N. Aronszajn, Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. | Zbl 0196.40803

[3] N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. | Zbl 0195.13102

[4] N. Aronszajn and K. T. Smith, Theory of Bessel Potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. | Numdam | MR 26 #1485 | Zbl 0102.32401

[5] A. P. Calderón, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. | Zbl 0124.31803

[6] N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience, New York, (1958). | MR 22 #8302 | Zbl 0084.10402

[7] K. O. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. | JFM 60.1078.01 | Zbl 0008.39203

[8] L. Hörmander, Linear Partial Differential Operators, Academic Press, New York, (1963).

[9] J. L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). | Zbl 0097.09501

[10] J. L. Lions, Une construction d'espaces d'interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. | Zbl 0118.10702

[11] S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. | JFM 65.1415.03 | Zbl 0021.06303

[12] R. S. Palais, On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. | Zbl 0084.37405