$\Gamma$ -convergence, Sobolev norms, and BV functions
Nguyen, Hoai-Minh
Duke Math. J., Tome 156 (2011) no. 1, p. 495-533 / Harvested from Project Euclid
We prove that the family of functionals $(I_\delta)$ defined by \[ I_\delta(g) = \mathop{\mathop{\int\int}_{\mathbb{R}^N \times \mathbb{R}^N}}_{|g(x) - g(y)| > \delta} \frac{\delta^p}{|x-y|^{N+p}} dx dy, \quad \forall g \in L^p(\mathbb{R}^N), \] for $p \ge 1$ and $\delta >0$ , $\Gamma$ -converges in $L^p(\mathbb{R}^N)$ , as $\delta$ goes to zero, when $p \ge 1$ . Hereafter $| \; |$ denotes the Euclidean norm of $\mathbb{R}^N$ . We also introduce a characterization for bounded variation (BV) functions which has some advantages in comparison with the classic one based on the notion of essential variation on almost every line.
Publié le : 2011-04-15
Classification:  28A20,  26A24,  26A84
@article{1301678731,
     author = {Nguyen, Hoai-Minh},
     title = {$\Gamma$ -convergence, Sobolev norms, and BV functions},
     journal = {Duke Math. J.},
     volume = {156},
     number = {1},
     year = {2011},
     pages = { 495-533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1301678731}
}
Nguyen, Hoai-Minh. $\Gamma$ -convergence, Sobolev norms, and BV functions. Duke Math. J., Tome 156 (2011) no. 1, pp.  495-533. http://gdmltest.u-ga.fr/item/1301678731/