On asymptotics of Eigenvalues for a certain 1-dimensional random Schrödinger operator
Kotani, Shinichi ; Van Quoc, Pham
Osaka J. Math., Tome 48 (2011) no. 1, p. 69-89 / Harvested from Project Euclid
The purpose of this paper is to study the limit distribution of individual eigenvalue of 1-dimensional Schrödinger operators with random potentials derived from the derivatives of compound Poisson processes possessing purely positive jumps or purely negative jumps. The central limit theorem for ``middle eigenvalue'' is also investigated.
Publié le : 2011-03-15
Classification:  60H25,  47B80
@article{1300802705,
     author = {Kotani, Shinichi and Van Quoc, Pham},
     title = {On asymptotics of Eigenvalues for a certain 1-dimensional random Schr\"odinger operator},
     journal = {Osaka J. Math.},
     volume = {48},
     number = {1},
     year = {2011},
     pages = { 69-89},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1300802705}
}
Kotani, Shinichi; Van Quoc, Pham. On asymptotics of Eigenvalues for a certain 1-dimensional random Schrödinger operator. Osaka J. Math., Tome 48 (2011) no. 1, pp.  69-89. http://gdmltest.u-ga.fr/item/1300802705/