On an integral-type operator between $H^2$ space and weighted Bergman spaces
Zhu, Xiangling
Bull. Belg. Math. Soc. Simon Stevin, Tome 18 (2011) no. 1, p. 63-71 / Harvested from Project Euclid
Let $H(\mathbb B)$ denote the space of all holomorphic functions on the unit ball $\mathbb B$ of $\mathbb C^n$ and $\Re h(z)=\sum_{j=1}^nz_j\frac{\pt h}{\pt z_j}(z)$ the radial derivative of $h.$ Motivated by recent results by S. Li and S. Stević , in this paper we study the boundedness and compactness of the following integral operator $$ L_gf(z)= \int_0^1 \Re f(tz) g(tz)\frac{dt}{t},\quad z\in \mathbb B, $$ between the Hardy space $H^2$ and weighted Bergman spaces.
Publié le : 2011-03-15
Classification:  Riemann-Stieltjes operator,  Bergman space,  Hardy space,  boundedness,  compactness,  47B38,  30H05
@article{1299766488,
     author = {Zhu, Xiangling},
     title = {On an integral-type operator between $H^2$ space and weighted Bergman spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {18},
     number = {1},
     year = {2011},
     pages = { 63-71},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1299766488}
}
Zhu, Xiangling. On an integral-type operator between $H^2$ space and weighted Bergman spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 18 (2011) no. 1, pp.  63-71. http://gdmltest.u-ga.fr/item/1299766488/