Linear maps preserving regularity in C-algebras
Bourhim, Abdellatif ; Burgos, María
Illinois J. Math., Tome 53 (2009) no. 1, p. 899-914 / Harvested from Project Euclid
Let A and B be unital C-algebras such that at least one of them is of real rank zero. We investigate surjective linear maps from A to B preserving the conorm, the (von Neumann) regularity, the generalized spectrum, and their essential versions. As a consequence, we recover results of Mbekhta, and Mbekhta and Šemrl for $\mathcal{L}(H)$ when H is an infinite-dimensional complex Hilbert space.
Publié le : 2009-05-15
Classification:  46L05,  47B49
@article{1286212922,
     author = {Bourhim, Abdellatif and Burgos, Mar\'\i a},
     title = {Linear maps preserving regularity in C<sup>*</sup>-algebras},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 899-914},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1286212922}
}
Bourhim, Abdellatif; Burgos, María. Linear maps preserving regularity in C-algebras. Illinois J. Math., Tome 53 (2009) no. 1, pp.  899-914. http://gdmltest.u-ga.fr/item/1286212922/